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1. GLOSSARY 
 

Abbreviations, Acronyms and 
Specific Terms Definitions 

AFAP As Far As Possible 

ALARP As Low As Reasonably Practicable 

API Application Programming Interface 

ASME American Society of Mechanical Engineers 

ATMP Advanced Therapeutic Medicinal Products 

CAPA Corrective Action and Preventive Action 

CM&S Computer Modelling and Simulation 

CoU Context of Use 

CRO Contract Research Organisation 

DMO Digital Mobility Outcome 

DPIA Data Protection Impact Assessment 

EAA Early Awareness and Alert 

EMA European Medicines Agency 

FDA United States of America Food and Drug Administration 

FFR Fractional Flow Reserve 

GCP Good Clinical Practice 

GDPR General Data Protection Regulation 

GLP Good Laboratory Practice 

GMP Good Manufacturing Practice 

GSP Good Simulation Practice 

HIPAA Health Insurance Portability and Accountability Act 

HTA Health Technology Assessment 

ICH International Council for Harmonisation of Technical Requirements for Pharmaceuticals 
for Human Use 

IEC International Electrotechnical Commission 

IEEE Institute of Electrical and Electronics Engineers 

IMDRF International Medical Device Regulators Forum 
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ISO International Organization for Standardization 

ISW_CoP In Silico World Community of Practice 

MDR Medical Device Regulation [Regulation (EU) 2017/745] 

MDRO Multi-Drug Resistant Organism 

MID Minimal Important Difference 

MMS Method of Manufactured Solutions 

NASA National Aeronautics and Space Administration 

NGS Next Generation Sequencing 

OECD Organisation for Economic Co-operation and Development 

PCP Pre-Commercial Procurement 

PMA Pre-market approval 

PPI Public Procurement of Innovative solutions 

QoI Quantity of Interest 

QSAR Quantitative Structure-Activity Relationship 

RCT Randomised Controlled Trial 

RTM Requirements Traceability Matrix  

RTM Requirements Traceability Matrix 

SaMD Software as a Medical Device 

SDP Software Development Plan 

SDP Software Development Plan 

SLC Software Life Cycle 

SOP Standard Operating Procedure 

SQA Software Quality Assurance 

SRD System Requirements Document 

SSED Summary of Safety and Effectiveness Data 

UML Unified Modelling Language 

VPH Virtual Physiological Human 

VV-40:2018 ASME standard “Assessing Credibility of Computational Modeling and Simulation 
Results through Verification and Validation: Application to Medical Devices” 

VVUQ Verification, Validation and Uncertainty Quantification 
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2. INTRODUCTION 
Chapter Editors:  

● Marco Viceconti (Alma Mater Studiorum – University of Bologna) 
● Liesbet Geris (VPH Institute) 
● Luca Emili (In Silico Trials Technologies) 

 

Contributors (random order): 

● Axel Loewe (Karlsruhe Institute of Technology)  
● Bernard Staumont (University of Liège)  

● Raphaëlle Lesage (VPH institute) 

● March Horner (Ansys Corp.) 

● Enrique Morales Orcajo, (Ambu A/S) 

● Martha De Cunha Maluf-Burgman (Edwards Lifesciences) 

 

2.1. Scope of this document 
The term GxP indicates a collection of good practices, e.g., quality guidelines, to ensure a product is 
safe and meets its intended use.  The most important examples of GxP in biomedicine are Good 
Laboratory Practice (GLP) and Good Clinical Practice (GCP).  The GLP were developed by the 
Organisation for Economic Co-operation and Development (OECD); they provide “a managerial 
quality control system covering the organisational process and the conditions under which non-
clinical health and environmental studies are planned, performed, monitored, recorded, reported, and 
retained (or archived)”1.  The International Council for Harmonisation of Technical Requirements for 
Pharmaceuticals for Human Use (ICH) curates the GCP.  GCP provides an international ethical and 
scientific quality standard for clinical trials to facilitate the regulatory authorities' mutual acceptance 
of clinical evidence in the various ICH regions. GxP guidelines are available for various industries, 
including foods, medical products, medical devices, and cosmetics.  In some cases, the GxP simply 
expresses best practices within an industrial sector; in others, they are elevated to quasi-regulatory 
standards, which must be met to achieve specific regulatory approval. 

The use of Computer Modelling and Simulation (CM&S) in clinical medicine is usually referred to 
as In Silico Medicine.  The term was first used in PubMed in 2013 and has become popular since 
then. The academic research community loosely uses the term in silico methodologies to indicate the 
use of CM&S to assess the safety and/or efficacy of new healthcare products, whether medical 
devices, medicinal products, or others.  The term appeared in PubMed in 2002 (Ashelford et al., 
2002). One of the issues with this term is that it uses the term “trial” loosely, whereas in the regulatory 
domain, the term is used in a much more specific way.  To avoid such confusion, going forward, we 
will use the term in silico methodologies only in a colloquial way.  Instead, we will use the term In 
Silico Methodology to indicate any use of CM&S as, at any level, a regulatory decision support tool 
on new medical products for which a marketing authorisation is requested, whether medical devices, 
medicinal products, or others. 

 
1 https://www.oecd.org/chemicalsafety/testing/overview-of-good-laboratory-practice.htm  
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This position paper on Good Simulation Practice (GSP) does not emerge from a vacuum.  For 
example, since 2002, at least 21% of 565 original premarket approval (PMA) applications for medical 
devices had computational modelling efforts provided in the Summary of Safety and Effectiveness 
Data (SSED) (Morrison et al., 2019). Our community of practice, in general, and major regulatory 
agencies, in particular, have been reflecting on using predictive models as a development and de-
risking tool for medical products.  In some cases, such reflections took the form of guidance 
documents or technical standards for specific uses. In Annexe 1, we review the existing regulatory 
guidance on the topic. 
While the regulatory community is actively engaged in developing a comprehensive regulatory 
framework that includes the use of computer simulations to support a medical decision with the 
introduction of the concept of “Software as a Medical Device” (SaMD), a similar level of engagement 
has been so far absent for the broader application of CM&S in regulatory decision-making processes. 
There is only one detailed resource for validating in silico methodologies applied to medical devices: 
the American Society of Mechanical Engineers (ASME) Verification & Validation (V&V)-40 
standard2, originally published in 2018, whose original scope was limited to medical devices 
(hereinafter referred to as VV-40:2018). 
While the VV-40:2018 standard is a valuable resource, the authors of the present document believe 
there is a need for a document that summarises the good practices in using in silico methodologies in 
the regulatory process for all kinds of medical products. Such a document could play a role similar to 
that of the Good Clinical Practice (GCP), the Good Laboratory Practice (GLP), or the Good 
Manufacturing Practice (GMP) guidelines.  Thus, by analogy, it could be named “Good Modelling 
& Simulation Practice for medical products”, and hopefully, it may be curated and/or adopted by the 
members of the International Medical Device Regulators Forum (IMDRF). A GxP may remain a 
voluntary guideline or be elevated to a standard by standardisation bodies such as the International 
Council for Harmonisation (ICH) or the International Organization for Standardization (ISO). 
However, the compilation of good modelling & simulation practice for medical products is now a 
challenging task. In silico methodologies have started to be adopted only recently, and the experience 
is limited. Also, the expertise required to write such document is extremely multidisciplinary.   

The VPH Institute3 and the Avicenna Alliance4 are two international not-for-profit organisations that 
represent all practitioners in the field of in silico medicine: the first represents the academic 
community, the second the industrial community.  The EU-funded In Silico World project5 operates, 
an online forum, in collaboration with the VPH Institute and the Avicenna Alliance, called In Silico 
World Community of Practice (ISW_CoP)6. The over 500 experts that participate in this ISW_CoP 
share a common professional or educational interest for in silico medicine.  Within this community a 
consensus emerged on the opportunity to collaboratively compile a position paper aimed to 
summarise the current thinking within the ISW_CoP on the good practices for In silico 
methodologies, so as to provide a basis for the future development of a formal standard on the good 
modelling & simulation practice for medical products. 

 
2 https://www.asme.org/codes-standards/find-codes-standards/v-v-40-assessing-credibility-computational-modeling-verification-

validation-application-medical-devices  
3 https://www.vph-institute.org/  
4 https://avicenna-alliance.com/  
5 https://insilico.world/  
6 https://insilico.world/community/  
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Thus, the scope of this document is to provide a list of the best practices on the use of computer 
simulation in assessing the safety and efficacy of medical products, as emerged by a consensus 
process within our ISW_CoP. The form we chose is a “Position Paper” - a public document providing 
an expert opinion to orient policies or standards. In this sense, the present document is not binding 
and represents only the consensus among some field experts. However, we hope this document might 
provide a starting point for a future standardisation effort by an appropriate body. 
CM&S is used over the entire life cycle of medical products, including discovery and design, 
verification, development, optimisation, re-design, etc.  However, this position paper focuses only on 
their use to assess the safety and efficacy of medical products. 

The first output that the ISW_CoP produced was a systematic analysis of all possible Contexts of Use 
(CoU) for In Silico methodologies (Viceconti et al., 2021a). CoUs are concise descriptions of how 
the new methodology is intended to be used in medical products' development and regulatory 
assessment process. 

To organise this long list, we used the taxonomy presented in Table 1.1, which will also be used 
throughout this position paper. The safety and efficacy of medical products are usually investigated 
using experimental methodologies: in vitro and ex vivo experiments, in vivo animal experimentation, 
or in vivo human experimentation. In silico methodologies are a valid alternative to these 
experimental methodologies. Using terminology that was first used to categorise alternatives to 
animal experimentation, In Silico methodologies can be used to reduce the experiment (fewer bench 
tests, fewer animals enrolled, fewer patients enrolled), refine the experiment (reduce the suffering of 
animals, reduce risks for humans, improve the ability of pre-clinical studies to predict the clinical 
outcome, generalise the experimental finding, etc.), and replace the experiment (replace the 
experiment entirely).  This produces a 3x3 taxonomy (table 1.1), which will be used in the remainder 
of this document.  
 

Table 1.1. Taxonomy of in silico methodologies 
  Reduce Refine Replace 

Preclinical 
In Vitro/Ex Vivo 
Experiments 

Reduce the number or 
duration of in vitro/ex vivo 
experiments 

Improve the predictive accuracy of 
safety and/or effectiveness provided by 
the in vitro or ex vivo experiment 

Replace a portion or all the 
required in vitro or ex vivo 
experiments 

Preclinical 
Animal 
Experiments 

Reduce the number of 
animals involved in the 
experiment, or its duration 
(adoption of sustainability 
principles)  

Alleviate the suffering of the animals 
involved, or improve the predictive 
accuracy of the safety and/or 
effectiveness provided by the animal 
experiment (solving or acknowledging 
animal protection issues) 

Replace animal experiments used 
for the prediction of the expected 
safety and/or effectiveness of a 
new treatment during clinical 
experimentation 

Clinical 
Human 
Experiments 

Support the design of clinical 
experiments.  Reduce the 
number of clinical studies, 
their duration, or the number 
of subjects involved. 
Solving scarcity on patients 
population related to rare 
diseases and where patients 
are children. 

Reduce the risks for the humans 
involved or improve the predictive 
accuracy of the safety and/or 
effectiveness provided by the human 
trials.  

Replace human experiments used 
for the prediction of the expected 
safety and/or effectiveness of a 
new treatment. 
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2.2. The critical elements of a Good Simulation Practice standard 
Chapter 3 treats the topics considered essential in future GSP standards separately.  Here we provide 
a brief introduction and summary. 

2.2.1. Theoretical foundations of Good Simulation Practice 

Regulatory science focuses on problems very close to clinical application. Thus, in general, its 
practitioners are not interested in the more fundamental aspects treated by mathematics, philosophy 
of science, and epistemology (study of human knowledge).  However, the extreme interdisciplinarity 
involved with computer modelling and simulation in the development and de-risking of medical 
products makes it difficult for every single group of experts to use the epistemological guidelines 
accepted and established in the practice of their discipline.  Having solid theoretical foundations helps 
in these cases to find common ground across different disciplines and epistemologies.  The goal of 
Chapter 3 is to provide such foundations. 

2.2.2. Model development 
A computer model is, first and foremost, a software artefact; as such, it must be developed and tested 
using the quality assurance principles in software engineering. While this is a relatively mature topic 
for regulatory science, which has been specialised for biomedical applications with the introduction 
of the so-called software as a medical device category of medical devices, there are some specificities 
of providing quality assurance for software with predictive purposes that require specific treatments 
in a future GSP standard.  In Chapter 4, we analyse this topic in full detail. 

2.2.3. Model credibility 

Even if a model has been developed with the highest possible quality standard, this does not guarantee 
that the predictions this model provides can be trusted per se.  The problem of assessing the credibility 
of a model’s prediction is a problem that has been addressed in the regulatory science of high-risk 
products such as nuclear power plants or passenger aircrafts. Yet, in the biomedical domain, this is a 
very recent topic. 

Annexe 1 provides an overview of all regulatory documents that address this problem. Still, even the 
most recent efforts, such as the ASME VV-40:2018, leave an ample portion of the territory 
untouched.  VV-40:2018 targets the development of medical devices, leaving out drug development 
and the development of ATPs.  The classic VVUQ approach the VV-40:2018 refers to is robustly 
defined for purely mechanistic models, models built exclusively from widely accepted theories; 
however, many predictors are now built using data-driven methodologies, where no theory is 
involved.  Furthermore, in practice, most models are called grey-box models because they are built 
by combining mechanistic and empirical knowledge. In Chapter 5, we provide a systematic 
discussion of the topic. 

2.2.4. Possible regulatory pathways 

The regulatory assessment of In silico methodologies does not fit well with the traditional separation 
between drugs and medical devices.  It must include elements of technical validation more common 
in the regulatory pathways of medical devices, but also elements of clinical validation more common 
in the regulatory pathways of medicinal products. In Chapter 6, we explore the issue of which 
regulatory pathway is most suitable to qualify in silico methodologies to be used in the regulatory 
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assessment of new medical products. We describe four possible pathways and discuss their pros and 
cons. 

2.2.5. Possible Health Technology Assessment pathways 

In silico methodologies can play an essential role in the marketing authorisation of new medical 
products, their cost-benefit assessment, the definition of prescriptive appropriateness, and post-
marketing surveillance.  In Chapter 7, all these aspects are considered and discussed with concrete 
examples. 

2.2.6. Ethical review of in silico methodologies 
Before it starts, any experimental study on humans must be reviewed by an independent organisation 
known in Europe as Independent Ethics Committee and in the USA as Institutional Review Board. 
Chapter 8 explores if and how such a review process needs to change when in silico methodologies 
are involved. 

2.2.7. The role of the sponsor in in silico methodologies 

The sponsor is “an individual, company, institution, or organisation which takes responsibility for 
initiating, managing, and/or financing a clinical trial”7. The sponsor plays a vital role in conventional 
trials, codified in detail in various standards and guidelines, such as the Good Clinical Practice.  
Chapter 9 explores how such a role needs to be extended when in silico methodologies are involved. 

2.2.8. The role of the Investigator in in silico methodologies 
Another role that needs to be partially redefined when the clinical evaluation of a new medical product 
involves in silico methodologies is that of the Investigator. In a clinical study, the Investigator is the 
person involved in running the study. The Investigator may help prepare and carry out the protocol 
(plan) for the study, monitor the safety of the study, collect and analyse the data, and report the results 
of the study. When in silico methodologies are involved, the Investigator is also responsible for 
carrying out the modelling tasks and generating the in silico evidence.  Chapter 10 explores how these 
additional responsibilities change the Investigator's profile and role. 
 

2.3. Essential Good Simulation Practice recommendations 
- In Silico methodologies can be categorised depending on how they are used as an alternative 

to experimental methodologies: to refine, reduce, and replace in vitro, animal, or human 
experimentation. 

 
 
  

 
7 https://toolkit.ncats.nih.gov/glossary/clinical-study-sponsor/  
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3. THEORETICAL FOUNDATIONS OF GOOD SIMULATION PRACTICE  
Chapter editors: 

- Marco Viceconti (Alma Mater Studiorum – University of Bologna) 

- Miguel Juarez (University of Sheffield) 

 

Contributors (random order): 

- Marc Horner (Ansys) 

- Daniela Calvetti (Case Western Reserve University) 

- Erkki Somersalo (Case Western Reserve University) 

- Liesbet Geris (University of Liege) 

- Axel Loewe (Karlsruhe Institute of Technology) 

- Martha De Cunha Maluf-Burgman (Edwards Lifesciences) 

 
3.1. Introduction 

This position paper aims to support future standardisation efforts on Good Simulation Practice.  Good 
practice standards are usually the summary of best practices, collected empirically and consolidated 
through consensus among practitioners.  As such, they are the least theoretical artefact one can expect 
in regulatory science.  Thus, it might require some explanation on why we decided to add a chapter 
on some of the theoretical foundations supporting the concepts in the following chapters. 
Regulatory best practices emerge through consensus among practitioners.  This implies that such 
practitioners are culturally relatively homogenous and share the same vocabulary. Even more 
important, they share a common epistemology, the principle around which humans establish new 
knowledge, in this case, knowledge on the safety and efficacy of new medical products.  This is one 
of the reasons why the regulatory assessment of medicinal products and medical devices remain 
separated, despite the more frequent combination products; each class of products has its own 
vocabulary, expertise, and epistemology. 

Nevertheless, there are also commonalities.  For example, the whole regulatory science is formulated 
as purely empirical, where experimental evidence and even better real-world observations are 
considered the only source of reliable information. Introducing modelling and simulation in the 
regulatory process raises several epistemological challenges.  Evidence is predicted, not observed.  
Such predictions can be based on well-accepted theories that resisted extensive falsifiability efforts, 
theories that might still be debated, and even purely phenomenological observations on a large 
volume of observational data. It is quite clear that a predictive model and a controlled experiment are 
different ways to investigate physical reality, but how they differ is debatable.  Even more complex 
is the definition of a formal process to establish the truth content of a model’s prediction (what we 
call here “credibility”).  
Last but not least, the introduction of computer modelling and simulation must add to the panels of 
experts that develop by consensus the good simulation practice totally new expertise such as applied 
mathematics, computer science, software engineering, and a whole territory of engineering science 
sometimes referred to as Modelling and Simulation in Engineering.  But this creates a group of experts 
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with different backgrounds, terminologies, and even epistemologies.  This is why the discussion 
around the regulatory acceptance of in silico methodologies is so complex; the involved experts 
struggle to communicate and collaborate effectively. 

There is no easy solution to this problem.  People with different expertise and backgrounds will have 
to try to talk to each other and try to understand the other points of view.  But in such a complex 
debate, we believe it is essential to have some theoretical foundations to which we can resort when 
the discussion reaches a dead end. 

Thus, contrary to all others, this chapter does not directly contribute to the regulatory science debate 
on the GSP. As such, it might not be of particular utility to the regulators, although it may serve as 
an indirect nexus between the regulatory and the CM&S sciences.  However, we believe it is a 
necessary element of such a document, and it might come in handy in some complex discussions that 
the consensus process will inevitably impose. 
 

3.2. What is a model in science? 
“A model is an invention, not a discovery” (Massoud et al., 1998). The Stanford Encyclopaedia of 
Philosophy devotes an entire chapter to the non-trivial question in the heading (Frigg and Hartmann, 
2020). For the purposes of this chapter, a useful definition is: “Models are finalised cognitive 
constructs of finite complexity that idealise an infinitely complex portion of reality through 
idealisations that contribute to the achievement of a knowledge on that portion of reality that is 
reliable, verifiable, objective, and shareable” (M Viceconti, 2011). Models are a way we humans 
think about the world. In science, models idealise a quantum of reality: 

- To memorise and logically manipulate quanta of reality (Descriptive models) 
- To combine our beliefs on different quanta of reality in a coherent and non-contradictory way 

toward the progressive construction of a shared vision of the world (Integrative models) 
- To establish causal and quantitative relationships between quanta of reality (Predictive 

models) 

Predictive models are used in science primarily for two purposes: 
- as tools used in the development and testing of new theories 

- as tools for problem-solving 
In this second use purpose, we define the credibility of a predictive model as its ability to predict 
causal and quantitative relationships between quantities in the natural phenomenon being modelled, 
as measured experimentally.  Thus, the first foundational aspect of a model’s credibility is the 
complex relationships that predictive models have with controlled experiments. 
 

3.3. A short reflection on the theoretical limits of models and experiments 
Nature is infinitely complex and its mere observation, while useful to formulate explanatory 
hypotheses of why a certain phenomenon occurs, is not sufficient to test whether such hypotheses are 
true.  To attempt the falsifiability of an explanatory hypothesis, we need real-world observations or a 
controlled experiment, or experiment for short. In an experiment, we intentionally perturb the system 
under investigation and observe how it responds to this perturbation.  By controlling some of the 
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variables that describe the system's state and observing how other state variables change, we can 
reject all hypotheses that are inconsistent with the results; the hypothesis that resists all our 
falsifiability attempts is tentatively assumed to be true. 

Controlled experiments are extremely challenging in life science because of the complexity and 
entanglement of living organisms. The most realistic experiment is the one where we merely observe 
the system, but even in that case, because of the observer effect, by the simple act of observing the 
system, we perturb it; then, human beings cannot achieve a hundred percent (100%) realism.  As soon 
as we perturb the system of interest, what we observe is not the system per se but an experimental 
model of it.  In other words, even an observational study is a model of reality. As soon as we 
investigate reality with a model (which we believe is always the case), the key question is the “Degree 
of Analogy” between the model and the reality being modelled: How close does the model capture 
the functional aspects of the reality that we are trying to understand?  It might look completely 
different, but if it works like the portion of reality under investigation, it is a good model.   

A big advantage of experimental models is that their Degree of Analogy with the reality they model 
can be inferred from how they were built.  Every experimental model contains a fraction of physical 
reality. The bigger this fraction, the higher the Degree of Analogy of the experimental model. 
Too frequently in medicine, we confuse analogy with homology: Two biological systems are 
homologous if they have evolved from the same origin or from a common ancestor, regardless of 
their function. Then, we consider mice as experimental models of humans because both are terrestrial 
vertebrates with common ancestors. Still, concerning a specific physiological function, a mouse 
might be farther from a human than a fruit fly.  

However, there is unquestionably a relationship between analogy and homology. The closer our 
experimental model is to the reality we want to investigate, the more likely the model will have a 
strong analogy with such reality. Therefore, even if it is done because of homology and not of 
analogy, in general, a randomised clinical trial of a new drug is more analogous to the reality of the 
use of that drug in clinical practice than an animal study on the efficacy of that drug, which in turn is 
more analogous than an in vitro experiment in cell culture. This might not always be the case, but it 
frequently is. 

Thus, we can infer the Degree of Analogy an experimental model has with the reality we are 
investigating by looking at how the experiment was built.  The more controlled the experiment, the 
heavier perturbation we make to the physical reality and the lower the degree of analogy. So 
experimental models trade off controllability with the degree of analogy, which can be inferred from 
how the experiment was built. 
It should be noted here that the controllability of an experiment in the context of life science is not 
only limited by the trade-off with the Degree of Analogy. Living organisms are very complex and 
highly entangled, which means that perturbing one specific aspect may (and usually does) change 
many other aspects, sometimes in fairly unpredictable ways. To this, we need to add all the ethical 
limits of animal and human experimentation. Sometimes the optimal experimental design is not 
possible for ethical reasons. 
There is another way to build models of reality.  As introduced above, models can be defined as 
“finalised cognitive constructs of finite complexity that idealise an infinitely complex portion of 
reality through idealisations that contribute to the achievement of knowledge on that portion of reality 
that is objective, shareable, reliable and verifiable” (M. Viceconti, 2011). If we accept this definition, 
models can be built not only by perturbing/manipulating the physical reality we want to investigate 
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(experimental models) but also by any other type of idealisation process. Here, we are interested in 
“in silico” models built through computational modelling and simulation of specific idealisation 
processes. 

The idealisation processes we use to build silico models can differ greatly.  Statistical inference 
models are built through inductive reasoning framed in a frequentist or Bayesian theory of 
probability; biophysical mechanistic models are built by deductive reasoning starting from tentative 
knowledge that has resisted extensive attempts of falsifiability (laws of physics). While these 
differences will become vital in other chapters, here it will suffice to recognise that in silico models 
are built through some idealisation process.  

We notice two significant differences if we compare in silico and experimental models. The first is 
that the Degree of Analogy an in silico model has with the reality under investigation cannot be 
inferred by how we built the model.  Since there is no grounding with the physical reality typical of 
experimental models, the degree of analogy must be demonstrated for each in silico model.  

This is a major shortcoming of in silico models, which would almost always make us prefer 
experimental models if not for another important difference: In in silico models, the controllability is 
entirely independent of the Degree of Analogy. This means that we could, in principle, consider the 
use of in silico models to reduce, refine, and replace experimental models when it is possible to 
demonstrate their Degree of Analogy with the reality being modelled and when that Degree of 
Analogy is higher than that offered by experimental models with similar levels of control. The second 
motivation for using in silico models to reduce, refine and replace experimental models is when for 
the same Degree of Analogy and the same level of controllability, in silico models can provide the 
required answer faster and/or at a lower cost. A third motivation comes from the observation that 
even for experimental studies within the currently accepted ethical boundaries, every animal and 
human experiment has an ethical cost that should be minimised as much as possible.  
We can infer the Degree of Analogy of experimental models simply by how they are built; all we 
need to do is to quantify their validity and reliability.  On the contrary, with in silico models, we must 
demonstrate that the model has the necessary Degree of Analogy for each Context of Use before we 
can use it to reduce, refine, or replace experimental models. 

 
3.4. Model for hypothesis testing, models for problem-solving 

In the previous section, we introduced experimental models as a necessity of the scientific method, 
which requires that each hypothesis born out of the observation of a natural phenomenon is 
relentlessly challenged with controlled experiments designed to falsify this hypothesis. This is the 
classic use of models in fundamental science when the goal is to increase our knowledge of the world 
around us.  But there is another use for models, whether experimental or in silico: Problem-solving. 
In his famous book “All Life is Problem Solving” (Popper, 1994), Karl Popper insists on using 
tentative scientific knowledge to solve problems affecting human life, including healthcare.  
All our reflections in this position paper are related to the use of models for problem-solving, and in 
particular, to a specific class of problem: Determining, before its widespread use, if a new medical 
product is sufficiently safe and effective to justify its marketing authorisation, by allowing patients 
to be the ultimate users of such new medical product. 
While in knowledge discovery, the focus is on the falsifiability of hypotheses, in problem-solving, 
we assume that the knowledge used to build our predictive models (if any) is tentatively true.  
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However, this does not automatically imply that the model predictions will be accurate; several 
factors, which we will detail in the next section, may introduce errors in the prediction.  Therefore, it 
is necessary to systematically assess its Degree of Analogy before a predictive model is used in a 
mission-critical context (e.g., a predictive model of a medical device or medicine that may save a 
patient's life). 

Another related dichotomy frequently used to separate statistical models from machine learning 
models is between inference and prediction. Inference aims to generalise for an entire population the 
properties observed in a sample of such a population. The purpose of inference models is 
representational in nature. Prediction aims to forecast unobserved data, such as future behaviour (e.g., 
in the business context, predictive modelling uses known results to create, process, and validate a 
model that may be used to forecast future outcomes in a specific context of use).  The purpose of 
predictive models is predictive in nature. While inference is backed by a robust mathematical theory 
(probability theory) and, in particular, by the Law of Large Numbers, which resisted extensive 
falsifiability attempts, this theory does not necessarily apply to data-driven predictive models, which 
makes the evaluation of the Degree of Analogy for data-driven models epistemologically challenging. 

 
3.5. Assessing the Degree of Analogy of a model: evidence by induction 

The predictive accuracy of a model can be estimated by comparing its predictions to the results of a 
matching controlled experiment. Matching here means that the model should be informed with a set 
of inputs that quantify the independent variables of the controlled experiment, the quantities we 
control in the experiment. By doing so, we assume that the model is a model belonging to that specific 
experiment. Thus, the predictive accuracy (for that particular set of inputs) is the degree of agreement 
between the values of the dependent variables measured in the controlled experiment and the same 
values as predicted by the model. This activity is usually called experimental validation of a 
predictive model. It should be noted that for classic validation studies, it is expected that the errors 
affecting the measurement methods used in the experiment to be negligible if compared to those 
affecting the model’s prediction; this allows the assumption that the measured value is “true” and the 
difference between prediction and measurement is due to the errors affecting the model. When this is 
not the case, comparing the model to the experiment becomes much more complex. 
There is a major issue with this approach: its inductive nature. By validating the model with one 
experiment, we estimate its predictive accuracy for those input values. This only allows us to say that 
the model has a certain accuracy when used to predict a specific condition described by those input 
values. A priori, nothing can be said about the model accuracy for other input values. Of course, it 
can be done another validation experiment and calculating the model's predictive accuracy for a 
second input set. Still, again, this will extend our validity statements only to this second condition.  
We can do many validation experiments and try to build by induction a general validity for our model, 
or we can look at the nature of the predictive error the model being tested exhibits and find patterns 
and regularities.  

The analysis of how the prediction error is composed is more commonly used in the validation of 
mechanistic, knowledge-based predictive models. In contrast, the validation by induction is typical 
for data-driven predictive models. The separation of the predictive error in its numerical, epistemic, 
and aleatoric components is the central motivation for the so-called Verification, Validation, and 
Uncertainty Quantification (‘VVUQ’) (Viceconti et al., 2020b). 
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3.6. The theoretical framing of VVUQ 

VVUQ developed within engineering sciences as an empirical practice without clear theoretical 
foundations.  This may sound surprising, but historically also the most important numerical methods 
in engineering, like finite element analysis, were first developed as empirical methods and only later 
found a theoretical framing as a special case of the Galerkin method.  Like all practices, different 
practitioners have different interpretations of what VVUQ means.  Also, VVUQ is frequently used in 
engineering science without many questions on why such a process should inform us better about the 
credibility of knowledge-based predictive models than any other approach.  
However, for the purpose of this chapter, it is important to make explicit the theoretical framing that 
supports the use of VVUQ. This is because, as we will see, this approach relies on several 
assumptions, which might not always be true when the evaluated model predicts complex living 
processes. Here, we provide a summary; full details can be found in (Viceconti et al., 2020b). 
There are three possible sources of predictive error in a knowledge-based model:  

- The numerical error we commit by solving the model’s equations numerically; 
- the epistemic error that we commit due to our incomplete, idealised, or partially fallacious 

knowledge of the phenomenon being modelled; 
- the aleatoric error due to the propagation of the measurement errors that affect all our model 

inputs.  
If we compare a model’s prediction to the result of a controlled experiment, we will observe a 
difference caused by all these errors.  The VVUQ process aims to separate these three components 
of the predictive error.  If the model is solved appropriately, we expect the numerical error to be 
negligible compared to the other two. We expect the aleatoric error to be comparable to the 
measurement errors that affect the model’s inputs. If this is not the case, the model might have 
mathematical or numerical instabilities. In other words, we want to be reassured that the epistemic 
error is the predominant component of the predictive error. 
Verification activities aim to quantify the numerical error. At the risk of oversimplifying, verification 
tests the model with special input values where epistemic and aleatoric errors are exactly null or 
asymptotically convergent to null.  While the verification is performed for these special input values, 
because it is generally true that numerical errors are independent of or only weakly dependent on the 
inputs, we assume that the numerical errors found with those special input values will remain roughly 
the same for any other input value. 
Uncertainty quantification explores how the experimental errors affecting the model inputs propagate 
within the model and affect the predicted values. The input values are perturbed according to the 
probability distribution of the experimental error affecting them, and the variance induced in the 
predicted outputs is recorded. Uncertainty quantification directly estimates the aleatoric error for a 
specific set of input values. It is usually assumed that how the error due to the inputs’ uncertainties 
propagates into the model’s predictions is independent of the specific values of the inputs. 
Validation activities rely on two assumptions. First, the numerical errors are negligible compared to 
the other two sources of error. Second, the aleatoric error is normally distributed around a null mean. 
If this second assumption is true, the effect of the numerical errors will be negligible when we 
calculate the predictive error as an average (e.g., root mean square average) over multiple 
experiments. In this case, the aleatoric errors will also net out, leaving the average predictive error as 
a good estimate of the epistemic error. 
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The last step in the VVUQ is the so-called applicability analysis. While we tend to assume that 
numerical and aleatoric errors do not depend on the specific values of the inputs, such an assumption 
cannot generally be made for the epistemic error. On the contrary, it is expected that any idealisation 
holds within a limit of validity, and as we get closer to those limits, the epistemic error will increase. 
There are various approaches to evaluating the applicability of a model. Still, most rely on one 
fundamental assumption: if two input sets are similar, the two output sets will also be similar. Suppose 
the model tends to show similar epistemic errors for all tested inputs. In that case, we can consider 
that for all other input values within the range of values tested during the validation, the epistemic 
error will also be similar. The further the model is used in terms of inputs from the range of values 
tested in the validation, the lower the reliability of the estimate of epistemic error we obtained with 
the validation activities. Another issue to consider, as mentioned above, is that every mechanistic 
model relies on theories, and every theory has some limits of validity. Once the inputs get closer to 
such limits, the model's predictive accuracy can degrade considerably. 

 
3.7. Levels of credibility testing 

The combination of VVUQ and applicability analysis extends the concept of the model’s credibility 
to combinations of input values that have not been experimentally validated.  However, the issue of 
assessing if a predictive model is credible enough for a specific context of use has two additional 
aspects: the level of credibility at which we test the model and the minimum predictive accuracy 
below which we must reject the use of the model.  The level of credibility testing is not an attribute 
of the model; it is the expectation of predictive accuracy for that model, which we define by choosing 
against what we calculate the predictive accuracy of the model. There are three possible levels (fig 
3.1): 

 
Figure 3.1. Definition of levels of credibility for a predictive model 

 

- At the lowest level of credibility testing (L1), models aim to predict a value within the range 
of values observed experimentally over a population.  Here, the predictive accuracy is 
measured in terms of the probability that the predicted value for each Quantity of Interest 
(‘QoI’) is a member of the population of values measured experimentally. 
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- The second level of credibility testing (L2) expects the model to predict some central 
properties accurately (e.g., the average) of the distribution of values observed experimentally 
over the population.  Here, the predictive accuracy is quantified by measuring the distance for 
each QoI between the predicted value and the average of the values measured experimentally. 

- Lastly, the highest level of credibility testing (L3) expects the model to accurately predict the 
value observed for each member of the population. Here, the predictive accuracy is calculated 
as a p-norm of the vector of differences between the predicted value and the measured value 
for each member of the population. Most commonly, a 2-norm is used (root mean square 
error), but a more restrictive infinity-norm, where the measure of the error is the maximum 
error found among all members of the population, may also be used. 

While this taxonomy of the level of credibility testing is not considered in any current regulatory 
document, we recommend it be considered in future guidelines and standards. 
 

3.8. The conundrum of validating data-driven models 
The whole framework of the model’s credibility based on VVUQ plus applicability was developed, 
having in mind models built starting from a causal explanation of the phenomenon being modelled 
(mechanistic models). By considering epistemic errors, VVUQ-based credibility accepts that the prior 
knowledge we use to build the model might be inaccurate, but it is always present.  And in most 
cases, such knowledge is expressed with mathematical forms whose properties summarise such 
knowledge.  For example, all theories expressed with differential equations implicitly assume that the 
variation of the quantities of interest over space and/or time occurs smoothly. This, in turn, derives 
from an essential physical knowledge of the conservation of mass, momentum, and energy.  In fact, 
many of the implicit assumptions that the use of VVUQ to assess a model’s credibility that we listed 
in the previous sections are usually valid under such assumptions. 
But this raises an important question: can credibility assessment based on VVUQ plus applicability 
be used also for models that are not built with some prior knowledge (hereinafter referred to as ‘data-
driven models’)? The short answer is no; here, we provide some theoretical justifications for this 
conclusion. 

In probability theory, if we are sampling some population properties, the Central Limit Theorem 
(‘CLT’) tells us that such sampling will eventually converge to a normal distribution.  The Law of 
Large Numbers (‘LLN’) states that with enough samples, the estimates of certain properties of the 
probability distribution, such as average or variance, will asymptotically converge to the true values 
for that population. This guarantee of asymptotic convergence makes it possible to infer the properties 
of a distribution from a large but finite number of samples. 

Let us now consider the use of a statistical model as a predictor. Here, using statistical inference, it 
can be built the hypothesis that the value of the dependent variable Y can be predicted given the values 
of a set of independent variables [X1, .., Xn] so that Y = f(X1, …, Xn). Here for simplicity of treatment, 
we assume that the variables Xi can be quantified without any uncertainty. By inferring the relations 
and correlations between X1 and Y, it can be built an estimate of f(), (called f’()), which it can be used 
to predict Y for combinations of X1 that have not yet been observed experimentally. If the LLN 
theorem holds, it is sufficient to have a finite number of observations [Xi, Yi] to build f’(). 
But if we now want to quantify the predictive accuracy by comparing the value predicted Y’(X)=f’(X) 
to that observed experimentally (Y) for a finite number of Xi sets, does the LLN still apply? Given a 
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large enough set of validation experiments where it is observed P(Y | Xi), is there a theoretical 
foundation to assume that the estimate of the average prediction error e’ = ave(Y |Xi) tends to the true 
value e it would get if we could validate the predictor with an infinite number of experiments? Does 
the average prediction error estimate tend asymptotically to the true average prediction error? 
When estimating, we learn about the characteristics of a population by taking a sample and measuring 
those characteristics. The fact that we have a sample brings about variability (uncertainty), normally 
described by a probability distribution whose parameters are related to the characteristic of interest. 
Usually, the more information we have about the characteristic (the larger the sample size), the larger 
the accuracy (estimating the correct value of the characteristic) and precision (decreasing the 
uncertainty) of the estimation. If some very mild conditions apply, we can assume the variability in 
the estimators follows a normal distribution: 
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where x is the measured quantity, µ is the mean, and s is the standard deviation. 
Now, if the objective is to predict, we must consider an extra source of uncertainty. This changes the 
nature of the statistical problem, indeed. The formal problem is to analyse P(Y | X), with Y the 
characteristic of interest and X all the relevant data available.  Of course, Y and X are related formally 
by a set of parameters relevant to X and Y; for simplicity, formalise them as g(X | A) and g(Y | B), 
with B = B(A) an invertible function. So, you learn about A — hence B — from X and that knowledge 
is described by f(B | X) — which can be Gaussian and with increasing precision and accuracy as 
above.  We can then use this knowledge to inform g(Y | B), but even if you knew B exactly, there is 
still a source of uncertainty in g(Y | B) that cannot be reduced further; moreover, the shape of g is not 
warranted to be normal at all.   
There are alternative ways to include the information about B in g(Y | B). But in any case, you can 
grasp what is going on formally by using the law of iterated expectations.  The expected value of Y | 
X can be calculated as the expected value of the expected value of Y | X,B.  The more you learn about 
B from X, the better the estimation of the mean of Y.  So, larger sample sizes yield more accurate 
predictions. However, this is not necessarily the case for the precision of the prediction. The variance 
of Y | X can be calculated as the expected value of the variance of Y | X,B plus the variance of the 
expected value of Y | X,B.  The second term decreases with the sample size, but the first one does not 
and depends on the distribution of Y | B.  The validation of a predictive model must take both sources 
into account. 

Let us assume we are interested in predicting a quantity Y, which depends on a set of values X.  f() is 
a predictive model that provides an estimate of Y, which we call Y’. The concept of model credibility 
assessment based on VVUQ is that the model f() is mechanistically defined, so we know that Y = 
f(X), and any other variable outside of the set X has little or no effect on Y (or the effect is mediated 
through X). 
An important implication of all this is that for data-driven models, the smoothness of the prediction 
error is not guaranteed, as it is for mechanistic models. In mechanistic models, we can assume that 
our error e = Y-Y’ depends only on X, so if we test f() for X1 and X2, where X1 ≈ X2, the prediction 
error will be similar, e1 ≈ e2.  This also means that if e(X1) is the prediction error for X1, and e(X2) is 
for X2, e(Xi) will be close to e1 and e2, if Xi is close to X1 and X2.  In other words, if the model is 
validated for a range of Xi, it could safely be assumed that the error will be similar for any other X 
close to Xi. But this cannot be said for data-driven models, such as Machine Learning (ML) models 
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because there is no guarantee that Y is a function only of X.  We cannot, as we do with mechanistic 
models, test the ML model for a finite number of cases, and assume that average accuracy will stay 
for any other case close to those tested. This is pure induction: by testing the ML model against ten 
experiments, it can only be said that the error with those ten cases is that, but the next could show an 
error totally different, even for a Xi close to the ten we already tested. 

This poses two significant problems when the VVUQ approach is used to assess the credibility of 
data-driven models.  The first is that while in mechanistic models, the variance of Y can be mainly 
explained with the variance of X, in data-driven models, this is not assured. As explained above, X 
may include variables that have little effect on Y. Also, we have no guarantee that all variables 
affecting Y are included in X. This uncertainty is the primary cause of the so-called ‘concept drift’, 
which sometimes causes a data-driven model to perform much worse than it did on the training set 
when the test is done against an independent validation set. 
The second is the lack of smoothness in the prediction error. As explained in Chapter 3.4, the 
applicability analysis presumes that the model's prediction error will vary smoothly as the inputs of 
the model are varied. This makes it possible to assume that if the model is used with inputs “near” to 
the values for which the model has been validated against experimental results, the error affecting the 
prediction will be similar to that quantified with the validation.  However, such assumptions cannot 
be made for data-driven models. 
The “Artificial Intelligence and Machine Learning (AI/ML) Software as a Medical Device Action 
Plan” that FDA published on January 20218 explicitly refers to introducing a so-called Predetermined 
Change Control Plan in the US regulatory system. Thus, a total product lifecycle (‘TPLC’) regulatory 
approach to AI/ML-based SaMD, is designed considering the iterative, adaptive, and autonomous 
natures of AI/ML technologies.  Essentially, the idea is that the validation of data-driven models is a 
continuous process where we continuously extend the test set, re-evaluate the model's predictive 
accuracy, and regenerate it, using this test set as an extended training set.  
Our reflections would suggest that this approach is not only possible but should be the only acceptable 
approach. In light of the discussion above, the idea of a “frozen” data-driven model, validated with 
the same VVUQ used for mechanistic models, seems unwise.  This conflicts with the obvious need 
for regulatory approval processes to base the decision on a prediction made using a “frozen” model. 
 

3.9. Conclusions 
Some conclusions can be drawn that can inform the rest of this position paper.   

The human mind can investigate reality only through cognitive artefacts we call models. Whether we 
use a mathematical model or a controlled experiment (including observational studies), we are always 
dealing with models of reality; ultimately, what matters is the Degree of Analogy that the model has 
with the reality being modelled.  The main advantage that experimental methods have over in silico 
methods is that in experimental models, the Degree of Analogy can be easily inferred by their design, 
whereas for in silico methods the Degree of Analogy must be assessed case by case. 

When a model is used to make predictions in the context of problem-solving, the Degree of Analogy 
with the reality being modelled becomes the credibility of the model’s predictions.  In general, 
credibility can be assessed only by induction; then, if we quantified the predictive accuracy of our 

 
8 https://www.fda.gov/media/145022/download  
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model against hundred (100) experimental measurements, we could only state the credibility of the 
model in those 100 experimental conditions. The number of experimental conditions for which the 
predictive accuracy needs to be tested, called the “solution space”, is infinite (∞). However, under 
certain assumptions, we can analyse how the various components of the predictive error (numerical, 
aleatoric and epistemic) vary over the solution space using a process known as VVUQ plus 
applicability analysis.  This makes it possible to estimate the predictive accuracy over the entire 
solution space with only a finite number of validation experiments. 

The assumptions that make the VVUQ process possible are usually valid only if the model being 
tested is built with some degree of prior knowledge (mechanistic model).  This is not the case for 
data-driven models, which can be tested only by induction. 
 

3.10. Essential Good Simulation Practice recommendations 
- The human mind can understand reality only through models. Models are finalised cognitive 

constructs of finite complexity that idealise an infinitely complex portion of reality.  Their 
usefulness is measured by their ability to capture the functional aspects of interest of the 
portion of reality that we are investigating.  This measure is called the Degree of Analogy. 

- In each portion of reality, the functional aspects of interest can be observed experimentally or 
predicted through inductive or deductive reasoning. All these methods of investigation are 
models.  However, the Degree of Analogy of experimental models can be directly inferred, 
whereas that of predictive models must be demonstrated by comparisons with controlled 
experiments. In other words, experiments are not necessarily more trustworthy than 
predictions, but their trustworthiness is easier to assess.  

- Predictive models can be divided into prevalently data-driven models and prevalently 
mechanistic models. In prevalently mechanistic models, the Degree of Analogy can be 
established by decomposing the predictive errors in numerical, aleatoric, and epistemic errors 
through a process known as Verification, Validation, and Uncertainty Quantification.  But in 
prevalently data-driven models, the Degree of Analogy can only be estimated by induction, 
using a total product lifecycle regulatory approach. 
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4.1. A risk-based paradigm of model development as a function of its Context of Use  

Good Simulation Practice implies that a computational model considered for a simulation task has 
also been developed according to good practice. In this Chapter, an attempt is made to summarise 
and synthesise good practices in computational model development. Considering numerous different 
model types (a recent report of the US Food and Drug Administration (FDA)9 mentions 39 different 
modelling classes), a high level of abstraction is needed. Therefore, this Chapter focuses on the model 
development and implementation as a process rather than concrete model-type specific 
recommendations. Generic model definition and design recommendations are addressed in section 
4.2.2.  

Whether one develops the predictive model from scratch or from existing libraries and solvers, 
computational model development shares many commonalities with software development: 

a) Models transform user inputs into outputs. 
b) Models can be developed as standalone units or part of larger systems/platforms. 

c) A model’s life cycle is similar to that of software. 
d) The concrete implementation of a predictive model is often part of a software. 

This considered, it is reasonable to explore existing standards for Software Life Cycle (SLC) 
management (systems and software engineering) as a starting point for good practices in model 
development, defined according to widely agreed-upon “best ways of doing” it10 - relevant for 

 
9 https://www.fda.gov/media/163156/download 
10 "ISO standards are internationally agreed by experts." https://www.iso.org/standards.html. Accessed 19 Sept. 2021. 
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application and uptake in mission-critical and highly regulated environments. Many different 
programming languages and software development paradigms exist and can be used for developing 
computational models under consideration of process-level software development good practice - 
agnostic of procedural and content-related details. We will therefore leverage the similarity of 
computational models and software and map good software development onto the former. 

Model developers must acknowledge that their “product” may operate under a “regulated” 
environment and that regulators will perform a benefit-risk assessment. Any regulatory effort in a 
mission-critical domain faces the challenge of balancing the need for the lowest possible level of risk 
for the patient and the economic viability of product development, without which no product could 
be brought to the market. Risk assessment, clinical evaluation, and validation revolve around the 
“intended purpose” of the Medical Device Regulation (MDR). There is a debate around how risk 
management should be implemented in the development of the device: following the concept of risk 
“As Low As Reasonably Practicable” (ALARP) as proposed by the ISO 14971:2019 or risk reduced 
“As Far As Possible” (AFAP) as requested by the new EU regulations11. Concrete regulatory 
recommendations on transferring these concepts to computational models do not exist yet except for 
an FDA draft guidance12 document. We, therefore, adopt a risk-based approach for the development 
of computational models, where the level of scrutiny (in terms of model life cycle management) is 
proportional to the risk (assessors would ascertain) that a predictive model can pose (e.g., for patients) 
according to pre-defined CoU(s). 

This Chapter, thus, focuses on the application of a risk-based approach (Figure 4.1) for the process 
of model and simulation software development: good practice establishes a minimal set of process-
level requirements (Figure 4.1) for all models (even low/medium-risk ones) while it requires more 
comprehensive compliance with relevant industry standards for medium to high risk, critical 
applications and models with substantial impact on regulatory decision-making. Here we focus on 
developing modelling and simulation software, whereas in Chapter 5, the focus is on the result of this 
process, the actual implementation (the model).  

In the following, we first highlight some industry standards and a potential mapping to elements of 
model development. We then iterate through the stages of a life cycle model relevant to model 
development. In each section, we adopt a viewpoint from low and high model risk to deriving two 
(extreme) levels of compliance with the cited industry standards and good simulation practices for 
model development (Tables 4.2-4.6).  
It should be stressed that this chapter's scope is limited to model development practices and does not 
consider model use and validation aspects, which are covered in Chapter 5. 
 

 
11 https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32017R0745  
12 https://www.fda.gov/media/154985/download  
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Figure 4.1. A risk-based approach for model development planning (simplified; for a complete model risk 

assessment, see ASME VV-40:2018). While a lean plan can suffice for low-risk CoUs, higher-risk projects must 
gradually consider the full range of relevant industry standards detailed in section 4.2. Note that during 

development, the model risk needs to be anticipated by the developer. 

 
4.2. SLC industry standards and relevance for model development  

Above, we introduced a risk-based approach for model development, implementing different levels 
of compliance with industry standards. As no industry standard for computational models yet exists, 
the next best option is to adopt and apply standards and best practices from related areas similar to 
computational model development. Of particular interest to the development of predictive models is 
the great body of process-level knowledge and recommendations available for software development 
– not only because of the analogy between software and model development but also because the 
developed model and the software in which it is implemented are often intertwined.  

For software development, two existing standards are relevant to the model development process: 
ISO/IEC/IEEE:1220713 and ISO/IEC:6230414. The former applies to every software package or 
system, whereas the latter is specific to medical device software. Other relevant best practice 
documents include the National Aeronautics and Space Administration (NASA) handbook on model 
development (NASA-STD-7009A15 and NASA-HDBK-7009A16). A full mapping of all the model 

 
13 https://www.iso.org/standard/63712.html  
14 https://www.iso.org/standard/38421.html  
15 https://standards.nasa.gov/standard/NASA/NASA-STD-7009  
16 https://standards.nasa.gov/standard/nasa/nasa-hdbk-7009  
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development activities, with processes from all potentially applicable industry standards, is out of 
this chapter's scope. Instead, we intend to highlight the opportunities where an explicit consideration 
of industry standards can help to ensure overall quality, especially in critical applications. 

- The ISO/IEC/IEEE 12207:2017 standard “Software life cycle processes” covers different 
process groups, including I) Agreement, II) Organisational project-enabling processes, III) 
Technical management processes, IV) Technical processes. Process groups III and IV are most 
relevant for a given model development project in a given organisational structure (for definitions 
of a process, see, e.g., ISO/IEC/IEEE 24774:2021). We stress that management and technical 
processes are orthogonal.  

o Technical management processes are concerned with managing the resources and the 
assets allocated by the organisation’s management and applying them. Technical 
management comprises a) Project planning, b) Project assessment and control process, 
c) Decision management process, d) Risk management process, e) Configuration 
management, f) Information management, g) Measurement, h) Quality assurance process.  

o Technical processes are concerned with technical actions throughout the life cycle. 
Technical processes transform the needs of stakeholders into a product or service. Technical 
processes include a) Mission analysis, b) Stakeholder needs and requirements definition, 
c) Systems/software requirements definition, d) Architecture definition, e) Design 
definition, f) System analysis, g) Implementation, h) Integration, i) Verification, 
j) Transition, k) Validation, l) Operation, m) Maintenance and n) Disposal, of which (a-h) 
may be classified as “development” and are covered in detail in this Chapter while (i-k) are 
more relevant for model validation (see Chapter 5). To qualify for sustained use or regulatory 
approval, also (l-n) need to be considered, where maintenance is often challenging in a 
research setting (Anzt et al., 2021). 

o ISO/IEC/IEEE 15288:2015 establishes a common framework of process descriptions for the 
life cycle of systems and is often used in conjunction with ISO/IEC/IEEE 12207:2017. 
Additionally, ISO/IEC/IEEE 24748-3 describes the application of ISO/IEC/IEEE 
12207:2017.  

- The standard ISO/IEC 62304:2006 “medical device software – software life cycle processes” 
may be more straightforwardly adopted as it is targeting regulated environments in healthcare and 
is recognized by both the European Union as a Harmonised Standard and the United States FDA 
as a Recognized Consensus Standard. The structure of this standard is similar to ISO/IEC/IEEE 
12207 (see overlap indicated in Table 4.1). In fact, modern development platforms that combine 
the ability to develop, secure, and operate software, can be operated to establish compliance (see 
here17 for the case of ISO/IEC 62304).  

These ISO/IEC standards do not prescribe any particular life cycle model, acknowledging that 
software development processes should be oriented towards the project objectives. Instead, it defines 
a set of processes, termed life cycle processes, which can be used in the definition of the SLC. 
Depending on the SLC model used, the development phases may be classified as follows:  

- Analysis & Requirements: consideration of the real-world system and the possibilities of 
what M&S can do for it; derive requirements from the mission analysis, the user perspective 
and the (integrated) system viewpoint. 

 
17 https://about.gitlab.com/solutions/iec-62304/  
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- Design: collection of information and definition of concepts to include in the proposed model; 
iterative process of creating the detailed, verifiable, and validated specification of the model 
and simulations for an intended use.  

- Implementation & Integration: realisation of the technical implementation of the model 
design in line with the requirements, specifications, and intended use. 

- Testing: checking to determine if the model meets all requirements and operational intentions. 
- Maintenance: release of the software, archiving of artefacts, life cycle management.  

 
Table 4.1. Relation between phases outlined in this document and most relevant phases and processes in selected 

industry standards and best practice documents on (model development) planning. 
 

SLC phase ISO IEC 12207 ISO 62304 NASA-HDBK-7009A 

Analysis Mission analysis Software development planning Model initiation 

Requirements Stakeholder needs and 
requirements definition 

Software requirements analysis  

 Systems/software requirements 
definition 

  

Design Architecture definition Software architectural design Model concept development 

 Design definition Software detailed design Model design 

 System analysis    

Implementation  Implementation Software unit implementation and 
verification 

Model construction 

 Integration Software integration and 
integration testing 

 

Testing Verification 
(developer and end user) 

Software system testing Model testing and release 

 Transition   

 Validation 
(Developer and end user) 

  

Maintenance Operation 
(end user) 

 Model use 
(end user) 

 Maintenance Software release Model and Analysis Archiving 
(developer and end user) 

 Disposal   

 
Orthogonal to the technical processes, adherence to management processes can be beneficial or 
required. Also, adherence to industry standards rarely concerns one portion of the set of business 
processes but more likely impacts a large set of operations. Other standards also apply, which 
especially cover quality management/assurance, such as ISO 13485 (quality management system for 
designing and manufacturing medical devices) or, even more generally, ISO 9001. Also, 
consideration of a service management system specified by ISO/IEC 20000-1, an IT asset 
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management system specified by ISO/IEC 19770 (all parts) and an information security management 
system specified by ISO/IEC 27000 can be relevant.  
 

4.2.1. Analysis & Requirements 
Initially, the development life cycle is initiated by a planning phase where the overall mission, 
problem, and context are analysed, and the actual requirements are defined. Subsequently, a plan 
defines how the new development will fulfil the mission. In many life cycle models, this initial phase 
is called Elicitation. Depending on the model, a development plan that is either more project-oriented 
or more technically oriented can be the better choice. Table 4.2 lists good model development 
practices by establishing, considering and documenting a model development plan and the 
requirements definitions document(s) for both a low and high model risk scenario (Figure 4.1 left and 
right, respectively). Generally, we regard the high-risk recommendation as the gold standard, while 
simplified processes and documentation can be acceptable for low-risk. 

From a model developer’s viewpoint, this phase in the SLC overlaps with the definition of a CoU in 
ASME V&V-40 (see Table 4.1). The model developer must anticipate the required CoUs that the 
model will aim for (the CoUs anticipated by the developer might be captured in a Concept of 
Operations document and use cases). In high-risk contexts, the formulation of the CoUs should thus 
be embedded with requirements definitions aligned with industry standards from related disciplines 
until specific ones become available. 

Planning for the project is often captured in a Project Management Plan. ISO/IEC/IEEE 16326 
provides more detail on project planning. The project planning process aims to produce and 
coordinate effective, workable plans. This process determines the scope of the project management 
and technical activities, identifies process outputs, tasks, and deliverables, and establishes schedules 
for task conduct, including achievement criteria and required resources to accomplish tasks. Project 
planning is an ongoing process throughout a project with regular plan revisions.  
Technical planning for a software system is often captured in a Systems Engineering Management 
Plan, a Software Engineering Management Plan, or a Software Development Plan (SDP). 
ISO/IEC/IEEE 24748‐5 provides more detail on software engineering technical management 
planning and includes an annotated outline for an SDP. Notably, ISO 62304-2006 and (Rust et al., 
2016) suggest an SDP structure commensurate with regulated environments. 

Good practice of model development should establish such a development plan (roughly, see “low 
risk” or, as precisely as possible, “high risk”; Table 4.2) considering the related guidance on software 
development. 
Another important stage in the initial development life cycle phase of Elicitation is the definition of 
requirements. Requirements can come from many different sources, for example, user needs, 
functionality, performance, risk, regulatory, processes, or marketing. As stipulated in Table 4.2 
(bottom row), both “low-risk” and “high-risk” models should document the requirements for their 
development. Explicitly adhering to industry standards might not be required for low-risk models.  
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Table 4.2. Good practices for the Analysis & Requirements phase of model development on the low and high-risk 
ends of the risk spectrum (see Figure 4.1, left and right, respectively). 

 

 Low Risk  High Risk  

Requirement definitions 
(design prerequisite)  

 

Mission requirements (CoU) 

Risks 

User requirements  

System requirements 
(if any) 

Concept of Operations (ConOps) 
document 

System Requirements Document (SRD)  

Requirements Traceability Matrix (RTM)  

See IEEE/ISO/IEC 29148-2018  

Model development plan 
(project management) 

Model development plan similar to 
a software management plan, see 
e.g. (The Software Sustainability 
Institute, 2018) 

Reference Materials (including 
knowledge and data sources)  

Development and life cycle planning  

Detailed model development plan 
similar to a software development plan. 
See ISO 62304-2006 and (Rust et al., 
2016) 

 
The requirements definition process captures and transforms stakeholder needs into “well-formed 
requirements” (suitable as inputs for subsequent model development procedures). A “well-formed 
requirement” shall possess the following attributes: necessary, appropriate, unambiguous, complete, 
singular, feasible, verifiable, correct, and conforming. IEEE/ISO/IEC 29148-2018 provides more 
detail on requirements engineering and requirement processes. 

In any case, together with the formulated CoUs (equivalent to mission requirements), the list of user 
and system requirements should be likewise defined. The entire set of requirements enables a 
common understanding between stakeholders and provides a reference for verification. They must be 
validated against real-world needs and be feasible to implement and to check (potentially formulated 
as part of a System Requirements Document (SRD) or Requirements Traceability Matrix (RTM) in 
high-risk contexts). This enables users to practically judge whether usage scenarios are within the 
intended CoUs versus ones that might be technically possible but outside of the CoUs. 
 

4.2.2. Design 
The key prerequisite for model design is the definition of the CoU(s) during the requirements 
specification. In the “design specification,” these CoU(s) need to be translated into the architecture 
and component design of the actual model. The formulation of the model in terms of fundamental 
mathematical equations and parameters is a key aspect, as introduced in Chapter 3. On the one hand, 
the model needs to be complex enough to fulfil its CoU(s). On the other hand, unique parameter 
identifiability and parameter uncertainty (either on a population level during calibration or in a given 
subject during personalisation depending on the CoU) (Galappaththige et al., 2022; Parvinian et al., 
2019), numerical accuracy and required computational effort as wells as the options for verification 
and validation (Pathmanathan and Gray, 2014; Pathmanathan et al., 2017) need to be considered. 
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Following the law of parsimony, one should aim for the simplest model that can serve the CoU. The 
decision-making process and limitations that come with this choice must be documented explicitly 
(Erdemir et al., 2019). Table 4.3 lists specific aspects to be considered during the Design phase for 
low and high-risk applications.  
 

 
Table 4.3. Good practices for the Design phase of model development on the low and high-risk ends of the risk 

spectrum. 

 Low Risk High Risk 

Model design   Simple model design document 
 
Definition of a conceptual model  
Which modelling approach is suitable for 
the CoU? 
What level of precision is required?  
Document the limitations of the model 
 
Definition of the architecture design 
Focus on functionality, covered 
hypotheses and phenomena  
  
Description of the detailed design  
Considering model-type specific 
recommendations 
Focus on expected sensitivity, 
identifiability, 
 
User interfaces 
Human-machine interfaces 
User experience 
Dialog design 
Presentation of information 
 
 
More detailed operational scenarios 
and use cases  
For example, as a simulation plan or 
protocol (Developed together with 
Sponsor (see Chapter 10))  
 

Comprehensive model design document 
(including the elements from low risk, 
compliant with relevant design 
documentation standards see for example18)  
 
Additionally: 
Definition of the architecture design 
Additionally (if relevant) describe design 
decisions related to  
performance 
compatibility 
transferability 
usability 
adaptability 
reliability 
security 
maintainability 
 
User interfaces 
Describe also measures to avoid (user) 
errors, avoid misinterpretation, to increase 
use efficiency (ergonomics) and user 
satisfaction  
Consider also Usability Engineering File 
(ISO 14971, IEC 62366-1) 
 
More detailed operational scenarios and 
use cases  
Document decision process according to 
standards (e.g., ISO 13485, IEC 62304) 

Model validation plan See Chapter 5 and FDA guidance19 

 
Bäker (Bäker, 2018) gave recommendations for computational simulations relevant to operational 
scenarios and use cases (to be specified by the developer) as well as the simulations to be performed 

 
18 https://ntrs.nasa.gov/api/citations/20160011412/downloads/20160011412.pdf  
19 “General Principles of Software Validation; Final Guidance for Industry and FDA Staff”, 
https://www.fda.gov/media/73141/download  
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by the end user (CoUs). The initial Concept of Operations document (see the previous section) has 
been updated to consider any limitations by the chosen architecture and further operational details.  
As evident from the “low-risk” scenario, comprehensive documentation for the model design is 
needed, irrespective of the risk. The minimum requirement for all models is thus to justify alignment 
of the modelling concept (and potentially data flow) with the Context of Use anticipated and to 
document fundamental design choices (ODE, PDE, agent-based model, etc., the granularity) and 
associated limitations. In all cases, the architecture design (phenomena and hypotheses, composition, 
input-output transformations) and the detailed design (equations, parameters, initial/boundary 
conditions) must be documented and justified. This includes potentially the workflow with which 
unknown parameters are estimated from target data or other workflows to produce tailored versions 
of the model (mapping onto a geometry, treatments, outputs of other simulations etc.). For many 
fields, model-type-specific recommendations exist and should be considered. For example, for 
pharmacological modelling (Byon et al., 2013; Cucurull-Sanchez et al., 2019; Jean et al., 2021; Ke et 
al., 2016; Overgaard et al., 2015; Zhao et al., 2012). A comprehensive list of all domains is beyond 
the scope of this Chapter. 

Considering relevant external conditions, the decision to use a specific model architecture should be 
based on the defined requirements (see the previous section). The essential properties of the 
architecture are often defined by the required internal and external interfaces to be implemented. The 
design should use established community standards regarding data formats and application 
programming interfaces (APIs) whenever possible. One should generally favour simple architectures 
following the established best practices in software engineering, such as information hiding, loose 
coupling, high cohesion, separation of concerns and hierarchical decomposition.  
Design decisions are documented in the software management plan, potentially already created 
during the elicitation phase. The documentation of the model design should be similar across all 
model risks, even though the extent and form may differ. Good practice in the definition and 
description of the architecture and system design is to use diagrams and (standard) graphical 
notations, such as the Unified Modelling Language (UML)20, to help communicate with stakeholders, 
explore potential designs, validate the architecture of the software, and document decisions. 
Alongside the input and output data description, detailing how these data enter and leave the system 
(i.e., interfaces) is also mandatory. Other relevant parts of the documentation (for example, a user 
manual) can only be generated during/after implementation (see next section). 
Notice that the design of the model should anticipate validation and verification activities (either by 
the developer and/or even the user) to be compatible with them. Therefore, a validation plan should 
be initiated during the design phase (see Chapter 5). 

As can be seen on the right side of Table 4.3, full compliance with industry standards relevant for 
models can necessitate exhaustive documentation of potential pitfalls, errors, practical and life cycle 
aspects and may need to follow certain forms. 
 

4.2.3. Implementation & Integration 
The purpose of the implementation process is to realise a specified system element. This process 
transforms requirements, architecture, and design (including interfaces) into actions that create a 

 
20 Unified Modelling Language v2.5.1 (2017) by the OMG standardisation group: https://www.omg.org/spec/UML/ 
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system element according to the practices of the selected implementation technology. This process 
results in a system element that satisfies specified system requirements, architecture, and design.  
The integration process aims to synthesise a set of system elements into a functional system (product 
or service) that satisfies system/software requirements, architecture, and design. This process 
assembles the implemented system elements. Previously defined interfaces are activated to enable 
the interoperability of the system elements as intended. 
 
Table 4.4. Good practices for the Implementation & Integration phase of model development on the low-risk and 

high-risk ends of the risk spectrum. 
 

 Low Risk  High Risk  

Versioned model Storage of code versions in version 
control systems, e.g., git. 

Documentation of the model (both in the 
form of the source code and a user 
manual).  

Version control, e.g., in line with ISO 12207, 
through a Configuration Management 
process for the selection of configuration 
items to be integrated. 

 
During implementation and integration (Table 4.4), established software engineering best practices 
should be applied (Rust et al., 2016; Anzt et al., 2021). Fundamental requirements specify the use of 
a version control system, such as git, and software documentation in the form of the source code and 
a user manual. Requirements and issues should be tracked and linked using the adequate 
infrastructure. Specific versions of the implemented model must be assigned unique identifiers (e.g., 
build number and date). In the case of software as a medical device, persistent unique identifiers are 
required. Release software versions should be archived with relevant artefacts like documentation, 
test reports, etc.  
Automated tests (see next section) can help increase the implementation efforts' efficiency. 

The more regulated the environment and the higher the risk of the CoU, the more important it 
becomes to standardise approaches strictly. Such standards can, for example, include code style 
guidelines and conventions.  
 

4.2.4. Testing 
Testing serves the purpose of checking whether the model was implemented correctly. It answers the 
question “Did we build the model right?” as opposed to validation, which addresses “Did we build 
the right model?” Both aspects are covered in detail in Chapter 5, so we only point out a few specific 
issues from a model developer's perspective here (Table 4.5).  
Various forms of testing can be applied during testing, including: 

- Regression tests, which run the model with specified input parameters and compare it against 
previously computed results. 

- Simplified test cases with analytical solutions, which furthermore allows evaluation of the 
quality of the solution. 
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- Performance tests can help obtain efficient code but are not the focus of the GSP.  

Regardless of the approach, testing should be automated as much as possible in continuous integration 
pipelines.  This will increase adoption and adherence by minimising developer efforts to maintain 
compliance. 

 
 

 Table 4.5. Good practices for the Testing phase of model development on the low-risk and high-risk ends of the 
risk spectrum. 

 

 Low Risk High Risk 

Tests Automatic tests during development: 

integration tests 

system tests / regression tests 

Additional automatic tests 
throughout the life cycle: 

unit tests 

consider static analysis 

maximize unit testing code coverage 

User Feedback optional  Essential 

 

4.2.5. Maintenance 
The need for maintenance can arise from multiple causes other than model bugs, such as version 
updates of the model solver, functionality, material laws or any of its constituent parts, changes in 
external dependencies (e.g., software libraries, compilers) or changes in the regulatory framework, 
requiring re-evaluation of specific credibility factors. Lehman’s laws of software evolution postulate 
that software must continuously evolve to remain useful (Lehman, 1980). This section focuses on the 
maintenance of the model itself (developer’s perspective) rather than the maintenance of specific 
simulations (user’s perspective). It assumes that a model is developed for several uses by different 
users.  
 

 
Table 4.6. Good practices for the Maintenance phase of model development on the low-risk and high-risk ends of 

the risk spectrum. 
 

 Low Risk High Risk 

Maintenance  Execution of the maintenance strategy in the 
model development plan.  
For each release, report the model’s capability 
to deliver credible results archived together 
with associated data, documentation, and 
simulation logs for test cases. 

Additionally: 
continuous recording of incidents, taking 
corrective, adaptive, perfective, and preventive 
actions and confirming restored capability 
according to ISO/IEC/IEEE 12207:2017.  
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The model development plan should document the maintenance strategy (ISO/IEC/IEEE 
12207:2017). Note that medical device regulation (MDR) requires a post-market surveillance plan 
and periodic safety update reports, which inform about the good practice of maintenance in high-risk 
contexts (pointing towards continuous monitoring activities).  
Release versions should be archived with associated data, documentation, and simulation logs for test 
cases (NASA-HDBK-700921). Version control is critical for accurate interpretation, repeatability, 
reproducibility, and debugging of the simulation predictions (Erdemir et al., 2020), and thus for the 
model's credibility. Ideally, automated tests (see section 4.3.4) are run for each version in continuous 
integration setups and a standard workflow for releases is defined in continuous deployment setups 
(NASA-STD-7009A22). 
As good practice, irrespective of the model risk, new release versions require an additional 
verification & validation iteration by the developer to guarantee that the released version of the model 
sustains its credibility for the CoU. In high-risk contexts, continuously monitoring the model’s 
capability to deliver credible results, recording incidents for analysis, taking corrective, adaptive, 
perfective, and preventive actions, and confirming restored capability (ISO/IEC/IEEE 12207:2017) 
are likely indicated.  
At a certain point, end-of-life decisions will have to be taken. It is important to inform the users in 
good time about the supported time frame for the model and to clearly communicate which support 
and training measures are available for users during which phases of the life cycle. Released versions 
must be archived and preserved in a format that allows execution beyond the supported lifetime. One 
solution can be software containers (e.g., Docker) that include all dependencies and only rely on an 
abstract execution layer that will be supported for an extended period. Also, model disposal measures 
prevent old model versions from returning to the supply chain ISO/IEC/IEEE 12207:2017, unless 
explicitly required.  
 
4.3. Conclusions  

In this Chapter, we outlined an approach to guide model development best practices based on a given 
CoU. Notice that this Chapter did not address the best practice for the end user of the model directly. 
Numerous industry standards exist on how to plan, implement, test, and maintain software, as part of 
medical devices and, thus in critical, regulated environments. As mathematical models for healthcare 
often take the form of software, the application of an adapted industry standard from software 
development, for example, ISO/IEC/IEEE 12207:2007 or ICEI/IEC 62304:2006, seems possible. 
However, full compliance with industry standards is not always required or advisable. We, therefore, 
suggest using model risk (as defined in Chapter 5) to guide the stringency and level of adherence to 
industry standards. As a best practice, all models should comply with minimum requirements to 
anticipate that maximising compliance helps with model / software / platform qualification / 
certification in regulatory processes.  
Life cycle planning reported by a model development plan is suggested as a critical step before 
implementation. Templates (e.g., SDP for medical device software in regulated environments (The 
Software Sustainability Institute, 2018) are available and can help to set up high-risk models 
compliant with current and future regulatory requirements. Requirements must be derived from a 

 
21 https://standards.nasa.gov/standard/nasa/nasa-hdbk-7009  
22 https://standards.nasa.gov/standard/nasa/nasa-std-7009  
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detailed analysis of the CoU, the mission and user needs and documented and traced throughout the 
development.  
Of particular importance is the documentation of the model formulation and architecture design 
decisions, the design itself, and interfaces derived from the requirements as part of a model design 
document, including a description of intended use cases. Good software development practices should 
be followed during model implementation and integration, such as version control and the provision 
of tested code and end-user documentation.  

During development and maintenance (as defined in the development plan), integration and systems 
testing should be performed and reported systematically and automatically. More involved testing 
paradigms (e.g., unit tests) and continuous monitoring must be envisaged for high-risk environments. 
Also, testing confirming model credibility for the CoU must be repeated and reported with every 
model release. 
This set of good model development practices provides a general, yet tangible, framework that applies 
to a wide range of in silico models and CoUs spanning different risk levels. 
 

4.4. Essential Good Simulation Practice recommendations 
- Establish the CoU(s) of your model, related risks and requirements in a model development 

plan before defining and implementing the model (Table 4.2). 
- Identify relevant industry standards for your model (section 4.2). 

- When designing the model for your CoU(s), consider relevant domain-specific standards, 
parameter identifiability and options for verification and validation. Document the decision-
making process for the conceptual model and the resulting limitations in the model design 
document (Table 4.3). 

- Implement the model software based on established good practices for software engineering 
and development (Table 4.4) and follow a test-driven development paradigm (Table 4.5). 

- Consider the entire model life cycle in the model management plan and secure adequate 
resources for maintenance (Table 4.6).  
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5.1. Introduction 
The need for a framework to justify that a model has sufficient credibility to be used as a basis for 
internal or external (typically regulatory) decision-making has been a primary concern with modelling 
and simulation (M&S) in healthcare. A computational model's credibility is established through 
verification, validation, uncertainty quantification (VVUQ), and applicability assessment. 
Verification establishes that a computational model accurately represents the underlying 
mathematical model and its solution. In contrast, validation establishes whether the mathematical 
model accurately represents the reality of interest. Uncertainty quantification aids in the identification 
of potential limitations in the modelling, computational, or experimental processes due to inherent 
variability (aleatoric uncertainty) or lack of knowledge (epistemic uncertainty).  Finally, applicability 
assesses the relevance of the validation evidence to support using the model for a specific Context of 
Use (CoU) (Pathmanathan et al., 2017). 

Various global organisations have formalised some of these concepts in guidance documents or 
technical standards for specific use cases.  Chapter 1 of this position paper systematically reviews 
this existing body of knowledge for various computational model types, ranging from QSAR to 
ABMs to physics-based models. And given the increasing interest in in silico methodologies, various 
global standards bodies (e.g., ICH, ISO) are revising or developing standards in this field.  
This chapter outlines concepts related to model credibility assessment in a way that is agnostic to the 
nature of the computational model type or medical product, extracting the relevant concepts common 
to the aforementioned standards and guidance documents.  To be as inclusive as possible, a level of 
granularity has been chosen to incorporate most of the existing knowledge, which may result in the 
grouping or omission of steps that do not exist in every standard or guidance. One example is the 
EMA’s distinction between technical and clinical validation. This was outlined in a letter of support 
to a request for qualification advice on the use of digital mobility outcomes (DMOs) as monitoring 
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biomarkers23, where it was stated that “The technical validation will verify the accuracy of the device 
and algorithm to measure a range of different DMOs. […] clinical validation will be obtained in an 
observational multicentre clinical trial” (see also (Viceconti et al., 2020a) for more details).  In the 
follow-up qualification advice, the same authors propose that a DMO is considered clinically 
validated for a well-defined CoU when one can demonstrate its construct validity, predictive capacity, 
and ability to detect change (Viceconti et al., 2022). Translating to in silico methodologies, both 
technical and clinical aspects of model predictions must be evaluated during validation. A clinical 
interpretation of the model validation should also be provided to assess the clinical credibility of the 
predicted quantities. 

This chapter will describe the concepts related to model credibility, supported by illustrative examples 
and references to standards, guidance, and additional documents that provide further clarification. 
We also introduce a hierarchical validation approach that distinguishes between a model's 
physiological, pathological, and treatment layers. 

 
5.2. Model credibility in existing regulatory guidelines 

Regulatory agencies have provided some operational guidelines for assessing a predictive model's 
credibility (see Annex 1 for a complete list of all guidance and standard documents).  For example, a 
2003 FDA guideline on exposure-response relationships24 acknowledged that “The issue of model 
validation is not totally resolved”. It recommended (implicitly assuming the models are all data-
driven) to separate the training set from the validation set of experimental data.  A 2018 EMA 
guideline on reporting PBPK models25 recommends validating models against experimental clinical 
studies of more than 100 patients. It provides instructions on how the comparison between predictions 
and experiments should be graphed. While this guideline does not explicitly refer to a risk-based 
credibility assessment, it states: “The acceptance criteria (adequacy of prediction) for the closeness 
of the comparison of simulated and observed data depends on the regulatory impact”. At around the 
same time, a 2018 FDA guidance on PBPK models26 requests VVUQ evidence in a generalised sense: 
“To allow the FDA to evaluate the robustness of the models, the sponsor should clearly present results 
from the methods used to verify27 the model, confirm model results, and conduct sensitivity 
analyses.”.  However, this guidance also requests that electronic files related to the modelling 
software and simulations be submitted along with the PBPK study report, to “allow FDA reviewers 
to duplicate and evaluate the submitted modelling and simulation results and to conduct supplemental 
analyses when necessary”. This may overlook the complexities of reproducing studies involving 
computational models. 
The FDA 2016 guideline on Reporting of Computational Modeling Studies in Medical Device 
Submissions28 outlined the importance of providing a complete and accurate summary of 
computational modelling and simulation evidence that is included in a dossier. This guidance 

 
23 https://www.ema.europa.eu/en/documents/other/letter-support-mobilise-d-digital-mobility-outcomes-monitoring-

biomarkers_en.pdf  
24  https://www.fda.gov/media/71277/download  
25  https://www.ema.europa.eu/documents/scientific-guideline/guideline-reporting-physiologically-based-

pharmacokinetic-pbpk-modelling-simulation_en.pdf  
26 https://www.fda.gov/media/101469/download  
27 Please note that the term ‘verify’ is used in place of validate in the guidance document cited in Footnote 4. 
28 https://www.fda.gov/media/87586/download  
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referenced the ASME VV-1029 and ASME VV-2030 standards but not ASME VV-40 because it was 
not published then.  However, an FDA draft guidance document31 was published in 2021 that outlines 
a generalised framework for assessing model credibility that relies heavily upon the ASME VV-40 
standard. This guidance proposes ten possible categories of credibility evidence (see table 5.1).  It is 
important to note that categories 1, 4 and 5 are explicitly within the scope of ASME VV-40, while 
the others may be considered extensions of the ASME VV-40 framework.  While the current draft 
guidance does acknowledge that there are different types of credibility evidence, the issue of different 
levels of credibility (as proposed in Chapter 2.6) is not considered. 
 

Table 5.1: Ten proposed categories for evidence of credibility. Reprinted from FDA draft guidance “Assessing 
the Credibility of Computational Modeling and Simulation in Medical Device Submissions”, Dec 2021. The table 

in the final version of the guidance may differ.  
 

Category  Definition  Definition  

1 Code verification results  Results showing that a computational model implemented in software 
is an accurate implementation of the underlying mathematical model.  

2 Model calibration evidence Comparison of model results with the same data used to calibrate 
model parameters.  

3 General non-CoU evidence  Calculation verification and/or validation evidence gathered for the 
model under conditions that are broad and not specific to the CoU.  

4 
Evidence generated using 
bench-top conditions to 
support the current CoU  

Calculation verification and/or validation evidence using bench-top 
conditions, that was explicitly planned and generated to support the 
current CoU.  

5 
Evidence generated using in 
vivo conditions to support the 
current CoU  

Same as previous category except using in vivo conditions.  

6 
Evidence generated using 
bench-top conditions to 
support a different CoU  

Calculation verification and/or validation evidence using bench-top 
conditions, that was planned and generated to support a different CoU.  

7 
Evidence generated using in 
vivo conditions to support a 
different CoU  

Same as previous category except using in vivo conditions.  

8 Population-based evidence  

Statistical comparisons of population-level data between model 
predictions and a clinical data set. (Note: individual-level comparison 
between model predictions and a clinical dataset falls under Category 
5.)  

9 Emergent model behaviour  
Evidence showing that the model reproduces phenomena that are 
known to occur in the system at the specified conditions but were not 
pre-specified or explicitly modelled by the governing equations.  

10 Model plausibility Evidence that supports the validity of the governing equations, model 
assumptions, and input parameters only.  

 

 
29 https://www.asme.org/codes-standards/find-codes-standards/v-v-10-standard-verification-validation-computational-solid-mechanics  
30 https://www.asme.org/codes-standards/find-codes-standards/v-v-20-standard-verification-validation-computational-fluid-dynamics-heat-transfer  
31 https://www.fda.gov/media/154985/download  



 

 37 

5.3. A standard framework: ASME VV-40:2018 

The American Society of Mechanical Engineers (ASME) Committee on Verification, Validation, and 
Uncertainty Quantification in Computational Modeling and Simulation has published the ASME VV-
10 and VV-20 standards, which outline the processes of verification, validation, and uncertainty 
quantification for finite element analysis and computational fluid dynamics, respectively (ASME 
VV-10 2019; ASME VV-20 2009). These standards outline VVUQ best practices but do not provide 
formalised procedures for steering model validation (and thus the associated model development 
activities) towards being sufficiently credible for a CoU.  
These factors led to the formation of the ASME VVUQ SC 40 subcommittee on Verification, 
Validation, and Uncertainty Quantification in Computational Modeling of Medical Devices. Through 
close collaboration between medical device manufacturers, regulatory agencies, and other device 
industry stakeholders, this subcommittee published the standard “Assessing Credibility of 
Computational Modeling and Simulation Results through Verification and Validation: Application to 
Medical Devices” in 2018 (ASME VV-40:2018). This standard introduces a risk-informed credibility 
assessment framework for physics-based models that applies to various scientific, technical, and 
regulatory questions. And while the standard is written with a focus on medical devices, the 
framework is general enough to be translated to a variety of applications, including model-informed 
drug development and physiologically based pharmacokinetic modelling (Kuemmel et al., 2020; 
Musuamba et al., 2021; Viceconti et al., 2021b). 

 

 
Figure 5.1. Process diagram for the risk-informed credibility assessment framework. ASME VV-40:2018).  

Reproduced with permission. 

 

The ASME VV-40:2018 risk-informed credibility assessment framework is shown in Figure 5.1.  The 
model credibility assessment begins by stating the question of interest, which describes the specific 
interrogation, decision, or concern being addressed (at least in part) by the computational model. The 
next step is to define the CoU, which aims to describe the role and scope of the model fully and 
exhaustively and how it is going to be used in relation to other forms of evidence, e.g., in vitro or in 
vivo data (see (Viceconti et al., 2021a) for examples of CoU), to address the question of interest. The 
overall model risk is then assessed for the CoU, where risk is a combination of model influence and 
decision consequence (see Figure 5.2). Model influence is defined as the contribution of the 
computational model relative to other contributing evidence in deciding, and decision consequence 
is the consequence (on the patient, for the clinician, business, and/or regulator) if an incorrect decision 
is made that is based, at least in part, on the model. The overall model risk sets the requirements for 
model credibility, determining the required degrees of model verification, validation, uncertainty 
quantification, and applicability such that the model has sufficient credibility for the CoU. 
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Figure 5.2. Schematic of how model influence and decision consequence determine overall model risk (ASME 

VV-40:2018).  Reproduced with permission. 

 
As an example of how the CoU drives risk-informed credibility, a computational model used for a 
diagnosis supported by medical imaging and clinical assessment would have lower model risk versus 
a scenario where the diagnosis relies solely on the computational model. As another example, a model 
used to define the optimal dosing regimen for a phase 3 clinical trial will have a lower risk if it is 
complemented with exploratory results from an in vivo phase 2 clinical trial than if used alone.  Both 
scenarios illustrate the impact of model influence on model risk, where the lack of supporting 
evidence to answer the question of interest means that the model credibility requirements are greater. 
As an example of the impact of decision consequence, consider a model used to make decisions about 
a medical device whose adverse outcome could result in severe patient injury or death.  In general, 
this case will be associated with a higher risk than a model used to make decisions regarding a medical 
device whose adverse outcome would not significantly affect patient safety or health. 

Model risk assessment may also be completed with a regulatory impact assessment for certain 
applications, which describes what evidence would have been provided in the regulatory dossier had 
it not been for the inclusion of the digital evidence (Musuamba et al., 2020). 
 

5.4. Verification 
Verification aims to quantify the part of the predictive error due to the numerical 
approximations/representations. To effectively separate the three sources of predictive error, the 
numerical error should be negligible compared to the sum of epistemic and aleatoric errors (see 
Chapter 3 for details). 
There are three possible sources of numerical error in mechanistic models: procedural errors, 
numerical approximation errors, round-off errors, and numerical discretisation errors.  The first two 
are explored through code verification, while the third is estimated through the calculation 
verification (Roy and Oberkampf, 2011) (see also ASME VV-10:2019 and ASME VV-20:2009 
(R2021)).  
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5.4.1. Code verification 

Code verification aims to identify and remove procedural errors in the source code and numerical 
approximation errors in the solution algorithms.  Code verification testing is performed for each 
computing platform, i.e., hardware configuration and operating system.   
Code verification to exclude procedural errors relies on software verification tests such as unit tests, 
integration tests, and case tests. These tests can be conducted through self-developed or existing 
automatic software regression suites. In addition, quality control, portability and versioning control 
should also be considered (see Chapter 3). Moreover, code verification involves developing and 
implementing a certified software quality assurance (SQA) program to help ensure the integrity of 
existing code capabilities during development.  
To increase rigour in the workflow, ensuring negligible numerical approximation errors, one can use 
the following code verification methodologies: expert judgement, code-to-code comparisons, 
discretisation error estimation, convergence studies, and calculating the observed order of accuracy32. 
Apart from expert judgement and code-to-code comparison, each requires comparing code outputs to 
analytical solutions (or at least mathematical conditions that ensure asymptotic convergence). 
Traditional engineering problems are one source of analytical solutions, e.g., laminar flow in a pipe 
or bending of a beam.  However, because of their simplicity, these solutions are often limited in their 
ability to verify the full breadth of the source code. The Method of Manufactured Solutions (MMS) 
provides a more general source of analytical solutions (Roache, 2019). The Method of Rotated 
Solutions (MRS) was also recently introduced to expand the scope of traditional engineering 
problems to provide better code coverage (Horner, 2021). Documented results from verification 
studies conducted by the software developer may also serve as a source of data to support code 
verification; however, since numerical accuracy is also hardware-dependent, it is a good practice to 
repeat those verification tests on the same hardware that will be used to run the models once in use. 
Lastly, it is important to note that the scope of the code verification study must include all portions 
of the simulation platform (e.g., model form, element type, solver) that are accessed as part of 
validation and model deployment. 
 

5.4.2. Calculation verification 
Calculation verification (also sometimes referred to as solution verification) aims to estimate the 
upper bound for the numerical approximation error. 
A first important step in calculation verification is to estimate the magnitude of numerical errors 
caused by the discrete formulation of a mathematical model, e.g., due to iterative errors and 
discretization errors. The purpose of calculation verification is to analyse the numerical solution's 
spatial and temporal convergence behaviour by refining the discretisation parameters and 
convergence tolerances of all iterative schemes and to estimate the numerical errors associated with 
using a given model.  
A sensitivity analysis could also be used to ensure that the calculation does not present a particular 
combination of input values around which slight variations in the inputs cause significant variations 
in the outputs (chaoticity).  Such occurrence might be due not only to a software bug or insufficiently 

 
32 https://www.asme.org/codes-standards/find-codes-standards/v-v-10-standard-verification-validation-computational-solid-mechanics  
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robust solver implementations that would have ideally been caught during code verification but also 
to ill-conditioning of the numerical problem due to an unfortunate combination of input values. 
Finally, calculation verification should ensure that user errors are not corrupting the simulation 
outputs.  No matter how accurate the calculations are, if the result is inaccurately transcribed due for 
example to a typing error, the predictive model would be totally unreliable.  

 
5.5. Validation 

5.5.1. A general definition 
As outlined in Chapter 3, validation aims to estimate the prediction error and associated uncertainty 
of a computational model. An essential part of the validation exercise is the evaluation of the model 
input(s) and output(s) for the various quantities of interest (QoIs) against a comparator, e.g., the 
experimental data that are used for validation.  Roughly, the comparator should be relevant to the 
defined CoU and cover a sufficient sample size (“Test samples” in ASME VV-40) as well as the 
desired range of inputs (“Test conditions'' in ASME VV-40). As mentioned in the FDA guidance, 
acceptable forms of comparators include in vitro, ex vivo, or in vivo test data; these tests may be 
performed ex-novo as part of the validation process (e.g., prospective clinical trial) or based upon 
historical data (e.g., retrospective clinical trial) or real-world evidence. To evaluate the model 
capacity to predict the QoIs, this comparator cannot be used during model development or the 
calibration process. 

Additionally, uncertainty quantification is a critical step towards validation of an in silico study.  This 
includes estimating the uncertainty associated with the comparator inputs and outputs as well as 
propagating input uncertainties through the computational model to estimate uncertainty in each QoI. 
 

5.1.1. Definition and examples 
Mechanistic models rely on four distinct elements: governing equations (i.e., the mathematical 
formulation of the modelled process or phenomenon), system configuration (i.e., the device geometry 
or in vitro system), system properties (i.e., material properties or physiological parameters) and 
system conditions (i.e., initial, boundary and loading conditions). What is considered as model inputs 
include initial conditions and parameter values and could extend to: 

- part geometry specifications,  

- medical imaging settings, 
- material framework and ranges,  

- boundary conditions for a model of medical device,  
- specific patient descriptors such as diet, age, weight, or comorbidities for a drug model, 

- numerical parameters used in the four components of the computational model. 
The assessment of the model inputs can be divided into two parts: quantifying sensitivities and 
uncertainties. The first is concerned with how variations in input parameters propagate through the 
simulation and their relative impact on the output(s). The sensitivity study results are a rank-order 
assessment of model input parameters from dominant to negligible impact. On the other hand, 
quantifying uncertainties addresses how known or assumed uncertainties in the model inputs are 
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propagated to uncertainties in the model results. The uncertainty analysis provides an error bar (or 
confidence interval) associated with each model output. In some scenarios, collecting model inputs 
is the limiting factor in the credibility assessment. However, the same is often true for all evidence 
collected by designed experiments or observation.  
Typically, validation assessment is framed around comparing the model input(s) and output(s) to 
experimental data - i.e., the comparator - obtained in a set-up that is well-characterised, well-
controlled, and relevant to the CoU. This situation corresponds to categories 4 and 6 of credibility 
evidence outlined in the FDA draft guidance33 describing sources of model credibility evidence 
(Table 5.0). The definition of the comparator should include consideration of both the test samples 
and the test conditions, where each of these can be defined by their quantity, uncertainty, and other 
descriptors. An assessment of the validation activities should also be used to establish the similarity 
of model inputs to those of the comparator and the similarity of the outputs and quality of the output 
comparison. 

An example of the various elements of a validation study is provided in Table 5.2. 
 

Table 5.2. Example of a validation study for a Finite element analysis (FEA) model predicting the fatigue 
strength of a hip stem family undergoing ISO 7206-4 standard testing. 

 
Question of Interest Context of Use (CoU) Computational model Comparator Assessment 

Does the proposed hip 
stem design meet 

fatigue performance 
requirements for cyclic 
loading per ISO 7206-

4? 

FEA is used to identify 
the worst-case size hip 

stem when loaded 
according to the 

corresponding ISO 
7206-4 standard 

testing.  The FEA 
model will be used to 
predict the magnitude 

and location of the 
maximum principal 
stress.  The 3 worst-

case sizes are referred 
for bench testing for 
fatigue performance. 

An FEA model of a hip 
stem family 

(represented by device 
geometry and material 
properties) with system 
conditions reproducing 
ISO standard testing. 

 
 

Sensitivity of results to 
system conditions 

(such as device position 
and orientation, load, 

and potting 
height/modulus). 

 
Uncertainty in key 

stem dimensions, based 
on manufacturing 

tolerance, are 
propagated through the 

model. 

Benchtop testing of the 
same hip stem family 
according to the ISO 

standard testing. 
 

 
 

Test samples: 
Statistically relevant 

number of production 
parts of 3 different 

sizes are tested with 
calibrated equipment. 

 
Test conditions: A 

single test condition is 
considered. Load and 

displacement are 
measured without 

uncertainty 
quantification in this 
specific physical test. 

Computational model 
vs Comparator 

 
Input comparison: All 

inputs are equivalent 
(same load, same 

boundary conditions) 
 

Output comparison:  
Ranking of hip stem 
sizes predicted by the 

FEA model (peak 
stress) is compared to 
ranking in the physical 

test (fracture load).  
 

 
33 FDA draft guidance “Assessing the Credibility of Computational Modeling and Simulation in Medical Device 
Submissions”, Dec 2021.  
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ASME VV-40 provides a framework to demonstrate that a model captures the physics of a medical 
device by comparison to a well-controlled benchtop test. However, a model used as an in silico 
clinical trial must be shown to reproduce clinical findings. And while the ASME VV-40 standard 
refers to clinical trials as possible comparators, detailed considerations are not provided. As outlined 
in the FDA draft guidance34 on model credibility evidence, a clinical data comparator may be based 
on in vivo tests performed to support a CoU or population-based data from a clinical study (published, 
retrospective, or prospective) addressing a similar question of interest. And while the clinical 
comparator does not have to be targeted on the device or drug of interest, it should be reasonably 
similar to ensure appropriate applicability (see chapter 5.5).  Examples of validation for a clinical 
comparator are provided in Tables 5.3 and 5.4.  
 

Table 5.3. Example of a validation for an agent-based model predicting the proliferation of a known 
mycobacterium strain in a pulmonary compartment as a function of a vaccine-induced immune response to 

infection. 

 
Question of 

Interest 
Context of Use 

(CoU) 
Computational model Comparator Assessment 

What is the 
vaccine effect 
size to prevent 
the active form 
of tuberculosis 

disease? 

Use an agent-
based model of 

interferon 
gamma 

predictions as a 
response 

biomarker to 
select the 
optimal 

effective dose 
of a new 

therapeutic 
vaccine against 
Tuberculosis for 

which the 
marketing 

authorisation is 
requested. The 
ABM will be 
used in the 

design of phase 
III trials. 

An agent-based model 
of the human immune 
system, tuberculosis 
disease and vaccine 

mechanism of action. 
 

 
 

Sensitivity of the 
results to system 

conditions (such as 
bacterial load, immune 

system profile, and 
vaccine strategy) is 

performed. 
 
 

A randomised double 
blind phase II clinical 

trial 
 

 
 

Test samples: Enrolled 
patients in the RCT. 

 
 

Computational model vs 
Comparator 

 
Input comparison: All 
inputs are equivalent. 

 
Output comparison: 

Predicted levels of 
interferon gamma were 

compared with the 
comparator output. 

 

 
 

 
 

 
34 FDA draft guidance “Assessing the Credibility of Computational Modeling and Simulation in Medical Device 
Submissions,””, Dec 2021.  
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Table 5.4. Example of validation of an FEA model predicting the fatigue strength of a hip stem during daily 
living activities. 

 
Question of 

Interest 
Context of Use 

(CoU) 
Computational model Clinical Comparator Assessment 

Does the 
proposed hip 
stem design 

have sufficient 
strength to 

prevent implant 
fracture in 
patients? 

FEA is used to 
assess the 

occurrence of 
fracture of the hip 
stem in a virtual 
patient cohort to 

enrich clinical data 
for those 

configurations 
which have low 

(or no) real patient 
numbers. 

 
 

An FEA model of a hip 
stem with system 

conditions reproducing 
the expected 

biomechanical 
environment and 

loading conditions 
during activities of 

daily living. 
 

 
 

Sensitivity of the 
results to the loading 
conditions and CT-
based bone material 

properties. 
 

Uncertainty in the 
cortical bone thickness 

based on the CT 
segmentation is 

propagated through the 
model. 

Stem fracture location 
and rate in a clinical 
study of a similar hip 

stem in a patient 
cohort. 

 

 
 

Test samples: 
Statistically significant 

number of patients 
were enrolled following 

standard practises, 
covering a wide range 

of demographics. 
 

Test conditions: The 
implant was subjected 

to a wide range of daily 
activities, based on 

clinical scores. 

Computational model 
vs Comparator 

 
Input comparison: 

The types of all inputs 
are similar, but the 

ranges are not 
necessarily equivalent 
(demographics, load) 

 
Output comparison: 

Fracture location 
(visual) and rate were 
captured in the clinical 
study and predicted by 

the FEA models. 
Fracture rate and 

location in the virtual 
cohort were compared 
to the fracture rate and 
location in the clinical 

comparator. 
 

 
5.5.2. Validation layers for in silico methodologies 

To provide rigorous validation of models used to represent preclinical and clinical studies, the ICH 
E11(R1) guideline on clinical investigation of medicinal products in the paediatric population 
suggests starting from “pharmacology, physiology and disease considerations.”. As such, the 
following three layers are suggested: 

Physiological layer: The model describes the underlying physiology of a human or animal system, 
which could model the treatment at the molecular, cellular, organ, to organ system scale. Associated 
QoIs are in qualitative or quantitative agreement with an appropriate comparator measured from a 
healthy system. 



 

 44 

Pathological layer: The model describes the disease processes of a human or animal system, which 
could model the treatment at the molecular, cellular, organ, to organ system scale. Associated QoIs 
are in qualitative or quantitative agreement with an appropriate comparator measured from a 
pathological system. 
Treatment layer: The model describes the treatment effect on a physiological or pathological human 
or animal system (which could model the treatment at the molecular, cellular, organ, to organ system 
scale). The model could be used to evaluate for a treatment whether the produced QoIs are in 
qualitative or quantitative agreement with an appropriate comparator. 
A strict distinction between these layers is not always possible. For example, the layers may be 
intertwined in the computational model (e.g., physiological and pathological layers) or even non-
existent (e.g., a physiological layer doesn’t make sense for the simulation of an in vitro experiment). 

Most guidelines recommend describing the assessment of model form in detail, defined in VV-40 as 
“the conceptual and mathematical formulation of the computational model”. Where the model is built 
with these three layers, these need to be described separately and in full detail.  But we also 
recommend, even if this is currently not required by any regulatory guideline or standard, to consider 
providing results of a validation activity, following the previously described method, for each of these 
layers, so-called hierarchical validation. Indeed, there is always the theoretical possibility that the 
errors of one layer hide those of another layer.  
 

5.5.2.1. Uncertainty quantification 
The quantification of model uncertainty is achieved by analysing the variation of a specific model 
output to unknowns occurring in the real-world scenario. Some of them are reducible, but some are 
inherent. This transforms a deterministic simulation output into a non-deterministic value 
characterised by a probability and a confidence interval. Performing such analysis is essential within 
risk-based frameworks for decision-making, as outlined in chapter 5.1. An elegant theoretical framing 
of the role of uncertainty quantification in decision-making can be found in (Farmer, 2017); reviews 
of numerical methods for sensitivity analysis used in other industrial sectors can be found in 
(Cartailler et al., 2014; Schaefer et al., 2020).  Some early examples are available for 
pharmacokinetics models (Farrar et al., 1989), cardiac electrophysiology models (Pathmanathan and 
Gray, 2014; Pathmanathan et al., 2015; Mirams et al., 2016), models for physiological closed-loop 
controlled devices for critical care medicine (Parvinian et al., 2019), models of intracranial aneurysms 
(Sarrami-Foroushani et al., 2016; Berg et al., 2019) and in systems biology models (Villaverde et al., 
2022). 
Uncertainty quantification is a stepwise process (Roy and Oberkampf, 2011) that begins with 
identifying all sources of uncertainty, followed by quantifying these uncertainties. Then, uncertainties 
are propagated through the model to provide the system response, which can be expressed through 
probabilities under a given confidence interval. A detailed technical explanation and an illustrative 
example can be found in (Roy and Oberkampf, 2011). The type of uncertainty quantification method 
(e.g., intrusive, non-intrusive, via surrogate models, etc.)  should be chosen appropriately according 
to the model under investigation (Smith, 2013; Nikishova et al., 2019). 

So far, we have implicitly assumed that all model inputs are affected only by a quantification 
uncertainty, e.g., due to measurement errors. But in some cases, certain inputs are not referred to an 
individual but rather to a population, and the uncertainty is dominated by inter-subject variability. 
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Some authors use, in this case, the term “prediction interval”, which encapsulates quantification 
uncertainties and inter-subject variabilities (Tsakalozou et al., 2021) 
 

5.5.2.2. Clinical interpretation of validation results 
This section is inspired by EMA’s distinction between technical and clinical validation, which is 
outlined in guidance for “Qualification of novel methodologies for medicine development” 35 and 
suggested in a letter of support to a request for qualification advice on the use of digital mobility 
outcomes (DMOs) as monitoring biomarkers.  The letter stated, "The technical validation will verify 
the device's accuracy and algorithm to measure a range of different DMOs. […] clinical validation 
will be obtained in an observational multicentre clinical trial” (see also (Viceconti et al., 2020a) for 
more details).  While a letter of support is not the most authoritative source, we are unaware of any 
official source providing such definitions. 
The distinction that some regulators make between technical and clinical validation of new 
methodologies comes from quantitative biomarkers.  Technical validation deals with the accuracy 
with which the quantification is done (i.e., a metrology problem of accuracy and precision 
estimation); clinical validation deals with the validity of using such measurement as evidence in a 
specific regulatory decision.  Traditionally, the accuracy with which quantitative biomarkers are 
measured is high, so technical validation is considered necessary but not critical. On the other hand, 
the relationship between a specific biomarker value and the clinical outcome is usually very complex, 
so clinical validation is considered the challenging part of assessing a new methodology. The 
complexity of the relationship between biomarker value and the clinical outcome is also an important 
reason why clinical validation is usually framed in terms of frequentist statistics. The expectation is 
that prior knowledge about such a relationship is scarcely informative. Thus, the validity of using the 
biomarker as a predictor of the clinical outcome is qualified only through an extensive induction, 
where a very large number of clinical experimental validations are required. 
A clinical interpretation of the model validation is an assessment of the clinical credibility of the 
predicted quantities, i.e., situations where the comparator used in the validation is population-based 
data collected as part of a clinical trial. This clinical interpretation may be required to satisfy 
regulatory requirements depending on the CoU. However, there is very little experience and no 
published guidelines from the regulatory agencies. For the time being, we propose to extract and 
interpret key results of the validation process similar to the one used to demonstrate the regulatory 
validity of a conventional biomarker used as an outcome measure.   

For conventional biomarkers, which are measured experimentally, an outcome measure is considered 
valid for a well-defined CoU when one can demonstrate its construct validity, its predictive capacity, 
and its ability to detect change, where: 

− Construct validity is “the extent to which the measure ‘behaves’ in a way consistent with 
theoretical hypotheses and represents how well scores on the instrument are indicative of the 
theoretical construct” (Killewo et al., 2010), page 199. Construct validity is typically 
demonstrated through the evaluation of simulation results (or model behaviour) regarding 
what is known (either quantitative data or qualitative knowledge). 

 
35 https://www.ema.europa.eu/documents/regulatory-procedural-guideline/qualification-novel-methodologies-drug-development-

guidance-applicants_en.pdf  
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− Predictive capacity provides evidence that measures can be used to predict outcomes. It is 
thus extracted from comparing the model input and output to experimental data obtained in a 
set-up that is well-characterised, well-controlled, and relevant to the CoU described in the 
previous section. As written above, experimental data used to demonstrate predictive 
capability should differ from the data used to develop and calibrate the model. 

− The ability to detect change is the most critical aspect, as it relates directly to the decision-
making process at the core of the regulatory process.  To demonstrate that a prediction can 
detect change, it is necessary to demonstrate longitudinal validity, minimal important 
difference, and responsiveness: 

o Longitudinal validity is the extent to which changes in the prediction will correlate 
with changes in the outcome over time or with changes in measures that are accepted 
surrogates for the outcome. Whereas predictive capacity is the correlation of the 
prediction with the outcome at a given time point, longitudinal validity is the 
correlation of changes in the predictions with changes in the outcome over time. The 
relationship between the simulated output and the outcome of interest for the 
regulatory decision should be evaluated as any biomarkers. This relationship may be 
obvious when the model output is a clinical endpoint or easily supported if the model 
predicts a validated biomarker (e.g., a validated surrogate endpoint in the example of 
tuberculosis vaccine efficacy). However, the model would likely need more 
supportive evidence if the output does not fall into one of these two categories. This 
question is mostly treated in the definition of the CoU, where the model’s use to 
answer the question of interest is described and justified.  

o The minimal important difference (MID) is the smallest change in the outcome 
identified as important in the patient’s and doctor’s opinion. This requires answering 
the following question: is the model precise enough to detect the MID for the outcome 
of interest? The answer to this question is extracted from the uncertainty 
quantification, which gives the prediction confidence interval. The prediction 
confidence interval cannot include at the same time the MID value and the null value 
(e.g., absence of difference). 

o Responsiveness to the treatment is the most important attribute for establishing the 
clinical validity of a predicted biomarker. It can also be described as the model's ability 
to estimate a clinical benefit. It should be possible to estimate the expected clinical 
benefit from the estimated predicted change of the simulated result. This last aspect is 
closely linked to the validation of the treatment layer described above, where the 
modelling of the treatment impact on the system of interest is evaluated.  

Reframing the VVUQ results to this entirely different credibility logic poses several challenges. Many 
In Silico methodologies can directly predict the primary clinical outcome or at least a QoI that is 
already accepted as a valid construct for that specific regulatory decision.  In this case, construct 
validity is already ensured. Otherwise, this evidence needs to be generated, using the same approaches 
used for experimental QoI; for example, by demonstrating convergent and discriminant validity (see 
for example this systematic review on the topic (Xin and McIntosh, 2017).  Predictive capacity and 
longitudinal validity are two evidences that fit well with the concept of validation according to the 
ASME VV-40:2018.  The concept of minimal important difference is somehow implicit in the VVUQ 
framework. If the QoI is already accepted in the regulatory practice as a measured value, there is a 
good chance that a MID value has already been estimated.  Again, a MID study is required if the 
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model predicts a new QoI. The need to demonstrate responsiveness is the one most debated.  This 
typically requires a narrowly defined CoU (specific disease, even a specific range of disease 
progression, specific class of treatments to be tested) and one or more full randomised interventional 
clinical trials, possibly conducted by someone independent from the proponents of the in silico 
methodology.  

But all this makes sense only if we consider an L2 validation (see Chapter 3), where the validation 
expectation is that the model predicts with sufficient accuracy a central property (e.g., the mean) of 
the distribution of a certain QoI as observed in a well-defined sub-population.  Because the implicit 
assumption is that the accuracy of the predictor may vary as a function of how we choose the 
validation sub-population, responsiveness assessment requires you to validate with a sub-population 
that is as close as possible to that you plan to use the in silico methodology (from which the need for 
a narrow definition of the CoU).  But all this would not be valid if the in silico methodology is tested 
at an L3 level of validity. In this case, each prediction is subject-specific, and the predicted QoI is 
compared to that measured on the same subject.  For such validation, in our opinion, the concept of 
clinical responsiveness collapses into that Applicability according to the ASME VV-40:2018.  
Ideally, in an L3 validation study, we want to test the predictive accuracy of the in silico methodology 
for the widest possible range of patients, severity of the disease, type of treatments, and even across 
multiple diseases where this is applicable. This is a critical point that will need to be addressed. 
 

5.6. Applicability of the validation activities 
Applicability represents the relevance of the validation activities to support using the computational 
model for the CoU. It includes (i) a systematic review of all validation evidence supporting the use 
of the model in the CoU, (ii) a precise comparison of the validation context, including both the QOIs 
and conditions of simulations (e.g., simulated population or experimental conditions and the range of 
conditions studied) and (iii) a rationale justifying model use despite the potential differences between 
the validation conditions and the requirements of the CoU. These comparisons are critical since any 
differences or shortcomings can reduce the overall credibility of the model to answer the question of 
interest, even in situations where their validation assessment is sufficient.  We refer the reader to the 
framework of Pathmanathan et al. (Pathmanathan et al., 2017), which provides step-by-step 
instructions for determining validation applicability. 

In analogy to what is proposed to evaluate the applicability of the analytical validation activities for 
biomarkers, we recommend describing and assessing the collection/acquisitions, 
preparation/processing, and storage of the comparator data.36 
 

5.7. VVUQ considerations for data-driven models and agent-based models 
The logic behind credibility assessment through VVUQ plus applicability analysis assumes implicitly 
that the model being assessed is mostly knowledge-driven, the knowledge used to build it has resisted 
extensive falsification attempts, and thus can be considered a scientific truth. Furthermore, the 
knowledge used to build the model is express in term of mathematical equations. In such a case, the 

 
36 U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and 
Research (CDER), and Center for Biologics Evaluation and Research (CBER), “Biomarker Qualification: Evidentiary 
Framework Guidance for Industry and FDA Staff DRAFT GUIDANCE,” 2018. 
https://www.fda.gov/media/119271/download  
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credibility assessment aims to quantify the prediction error and decompose it into its components 
(numerical approximation, aleatoric, and epistemic errors). Then the applicability analysis confirms 
that the prediction error observed in the validation studies represents the prediction error we expect 
across the range of possible input values. 
The extension of this reasoning to data-driven models poses some problems. Here we only give a 
summary; for an in-depth discussion, please refer to chapter 3. Validation of data-driven models can 
be performed by calculating the predictive accuracy against one or more annotated datasets (e.g., 
results of experimental studies where the QoI is measured together with all input values of the model), 
as far as these datasets were not already used to train the model (test sets). In knowledge-driven 
models, the epistemic errors are limited to how we implement reliable knowledge in our model; in 
data-driven models, epistemic errors are not bounded a priori. Numerical approximation errors do 
not exist when there are no equations to solve; hence some verification aspects may not apply 
(whereas others, such as software quality, remain).  Applicability analysis assumes a certain degree 
of smoothness in how the prediction error varies over the range of possible input values. While for 
knowledge-driven models, this assumption descends from the properties of the equations that 
represent the knowledge, such an assumption is not guaranteed in data-driven models. In principle, 
an artificial neural network model could have a predictive error of 10% of the measured value for a 
given set of input values, and an error of 100% for another set of inputs, even if those are quite close 
to the first set. But the bigger difference is related to the risk of concept drift that all data-driven 
model face. Data-driven models make predictions by analysing the correlations between inputs and 
outputs over a set of experimental measurements. Concept drift means the predictive accuracy of a 
data-driven model decreases over time. This may happen for several reasons, for example, if the data 
sample used to train the data-driven model is no longer fully representative of the phenomenon being 
modelled. While there are techniques to reduce this problem, there is never absolute certainty that 
concept drift will not occur. This is why there is a growing consensus that the credibility of data-
driven must be framed in a Predetermined Change Control Plan, where the predictive accuracy is re-
assessed on newly collected data37. 
Agent-based models are a class of predictive models used in biomedicine. These are a generalisation 
of the concept of cellular automaton first proposed in the 1940’s. Most agent-based models are 
formulated in term rules, through which, at each time step are decided the state transitions of the 
autonomous agents in the simulation. The key point here is how such rules are defined.  If the rules 
are defined empirically, for example by analysing experimental data, the credibility of that agent-
based model should be assessed as for data-driven models, with all the implications mentioned above.   
On the contrary, if the rules descend form quantitative knowledge that has resisted extensive 
falsification attempts, the agent-based model should be considered a knowledge-driven model. 
However, in this second case, some differences apply, due to the fact that the knowledge that drives 
the model is not expressed in term of mathematical equations, but in term of rules. This makes the 
concept of verification more complex to define (see for example (Curreli et al., 2021)). 

As this field evolves, more and more sophisticated models will appear. Some problems can be 
accurately modelled only by combining in a single predictor data-driven modelling and knowledge-
driven modelling.  The definition of the correct credibility assessment process for such hybrid models 
is challenging and cannot be generalised. As a rule of thumb, each model should be classified as 

 
37 https://www.fda.gov/media/145022/download  
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predominantly data-driven or as predominantly knowledge-driven, and the credibility assessment 
process should stem from such classification. 
 

5.8. Final credibility 
Once the credibility assessment is completed, it must be determined if the model is sufficiently 
credible for the CoU.  Note that the CoU can be modified, and the credibility assessment repeated if 
the model fails the credibility assessment. Alternatively, the model itself, or the credibility activities, 
can be revisited and improved to reach the required level of model credibility. A comprehensive 
summary of the computational model, model results and conclusions must be documented and 
archived upon conclusion of the modelling project.   
 

5.9. Essential Good Simulation Practice recommendations 
- The credibility of in silico methodologies based on predominantly mechanistic models can be 

effectively demonstrated following the risk-based approach to model verification, validation 
and uncertainty quantification as detailed in the technical standard ASME VV-40:2018. The 
credibility of methodologies based on predominantly data-driven models should follow a 
Predetermined Change Control Plan, where the model's credibility is periodically retested 
using new test data. 

- Where applicable, the validation of predominantly mechanistic models should be done 
separately for the physiology modelling layer, the disease modelling layer, and for the 
treatment modelling layer. 

- Regulators qualifying in silico methodologies to be used as drug-development tools expect 
that prior knowledge is generally scarcely informative. 

- Regulators currently require that in silico methodologies be used as drug-development tools 
are qualified following the same regulatory framework used for experimental methodologies. 
In particular, the technical validation is expected to be separated from the clinical validation. 
Technical validation deals with the accuracy with which the quantification is done; clinical 
validation deals with the validity of using such quantity (measured or predicted) as evidence 
in a specific regulatory decision. Clinical validation requires demonstrating construct validity, 
predictive capacity, longitudinal validity, minimal important difference, and responsiveness.  
While some of these concepts map well with the credibility assessment by VVUQ and can be 
framed simply as special cases of the VVUQ plan, current requirements to demonstrate 
responsiveness assume an L2 level of validity (population-based validation).  This approach 
is incorrect for in silico methodologies being tested at L3 and should be revised. 

- In analogy to what is proposed to evaluate the applicability of the analytical validation 
activities for biomarkers, we recommend describing and assessing the collection/acquisitions, 
preparation/processing, and storage of the comparator data used to validate in silico 
methodologies. 
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6. POSSIBLE QUALIFICATION PATHWAYS FOR IN SILICO METHODOLOGIES  
 

Chapter editors: 

- Marco Viceconti (Alma Mater Studiorum – University of Bologna) 
 

Contributors (random order): 

- Cecile F. Rousseau (Voisin Consulting Life Sciences) 
- Emmanuelle M. Voisin (Voisin Consulting Life Sciences) 
- Alexandre Serigado (Voisin Consulting Life Sciences) 

 
6.1. Introduction 

Ultimately, regulatory science is a matter of trust.  You need to trust that certain evidence, when 
obtained with certain methodologies, is sufficient to inform about a new medical product's safety 
and/or efficacy. Trust is formed based on previous experience but is also informed by the educational 
background of the experts involved and, in particular, how they decide when a belief can be 
considered true.  And when previous experience is scarce, the educational background drives the 
decision to trust a new methodology. 

Medical device regulators build their regulatory science using an epistemology that is at least in part 
that of physical sciences.  In this context, it is common to expect quantitative experimental results, 
measurement methodologies mostly free of systematic errors (unbiased), and prior knowledge from 
fundamental laws of physics and chemistry to be frequently informative.  Under these expectations, 
the inference is mostly Bayesian in that posterior probability is the product of the likelihood 
probability observed through controlled quantitative experiments and the prior probability that 
existing knowledge provides. Because the prior knowledge in use has frequently resisted extensive 
falsification attempts, there is also an expectation that the prior probability and the likelihood are 
quite similar, which is the theoretical basis of the concept of validation.  This opens the door to using 
in silico methodologies to reduce, refine, and partially replace experimental methodologies.  

Drug regulators build their regulatory science using an epistemology proper of natural and social 
sciences. In this context, it is common to expect experimental results that are qualitative or semi-
quantitative. Even when quantitative results are available, there is an expectation that they may be 
affected by considerable systematic errors caused by selection, information, and confounding biases. 
There is also the expectation that prior knowledge is scarcely informative due to the complexity and 
the non-linearity of the phenomena under investigation. Under these expectations, the inference is 
mostly frequentist.  Prior knowledge (and thus in silico methodologies based on it) can, at most, be 
used to inform the design of experimental studies and to surrogate likelihood probability only when 
experimental studies are impossible. 
As medical products (and the technology to test them) evolve, these expectations need to change.  But 
such change will not happen overnight. The trust in the in silico methodologies will grow as they 
demonstrate their validity when used as clinical technologies and as clinical research tools in pre-
regulatory settings. But in parallel, it is also necessary to break down the cultural walls that separate 
the regulatory science for medical devices from that for drugs. Scientific advisory panels must 
become more interdisciplinary, and all expertise should be represented. Targeted re-training programs 
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are also necessary for the staff of regulatory agencies that inform on the opportunities and risks that 
innovative technologies pose. 
Another possibility discussed in this chapter is to modify the current regulatory qualification 
pathways for in silico methodologies. This might allow the optimal use of expertise already present 
within regulatory agencies in providing a thorough and balanced qualification process. In the 
following sections, we discuss possible alternative pathways to provide elements for reflection to 
regulatory agencies. 

 
6.2. Pre-certification as Predictive SaMD 

Most regulatory authorities nowadays recognise software with a medical purpose as a special class 
of medical devices called Software As a Medical Device (SaMD). The International Medical Device 
Regulators Forum (IMDRF) defines it as "software intended to be used for one or more medical 
purposes that perform these purposes without being part of a hardware medical device."  FDA CDRH 
and the EU CE-marking process both include established regulatory pathways for such technologies. 
A special case is that of SaMDs with predictive capabilities. Examples of this new class of SaMD are 
solutions for fractional flow reserve (Zarins et al., 2013), planning software for transcatheter aortic 
valve replacement (Halim et al., 2021), or software to predict the risk of hip fracture from CT data 
(Keaveny et al., 2020).  A recent FDA draft guideline confirms that even for these solutions, the 
ASME VV-40: 2018 can be used to assess the credibility of these predictive models. 

A first possible regulatory pathway for in silico methodologies could be to require that any evidence 
supporting the marketing authorisation of a new medical product (whether the medical product is a 
medical device, a drug, or an ATMP) if obtained in silico, should be produced with technologies 
certified as predictive SaMD. Once the in silico methodology is certified as a predictive SaMD, its 
qualification as a medical device or drug development tool would be limited to the clinical validation 
aspects.  
The main limitation of this approach is that not all in silico methodologies are patient-specific models, 
and thus their framing into a medical purpose might be impossible. Another potential issue is that 
some safety requirements that are indispensable for medical purposes might not be necessary when 
the model is used as an in silico methodologies solution; thus, this pathway might be unnecessarily 
severe for some solutions.  On the other hand, it would simplify the regulatory process for solutions 
intended as SaMD and in silico methodologies, as the SaMD certification would cover the technical 
validation in the qualification process. 

 
6.3. Certification of the technical validity 

A more limited version of the SaMD pathway could be a certification of technical validity according 
to the ASME VV-40:2018 or other similar standards provided by FDA CDRH or EU notified bodies. 
Once an in silico methodology has such certification, the qualification as a medical device or drug 
development tool would focus only on clinical validation.  

The main limitation of this approach is the need to establish an accreditation process for bodies with 
the relevant expertise that can produce a credibility certification according to some technical standard. 
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6.4. Towards an ad hoc qualification pathway for in silico methodologies 

A third possible strategy could be to recognise that the qualification of in silico methodologies, 
regardless of whether they are used to develop drugs or medical devices, requires a specialised panel. 
This would imply creating an ad hoc process for in silico methodologies, which cut through most 
regulators' current organisation built on the distinction between drugs and devices. The scientific 
advisory panel would include the same expertise normally found in qualification panels but also 
experts of in silico methodologies, qualified to evaluate the most technical aspects. 

The main limitation of this approach is that an ad hoc qualification pathway would need to be created. 
In the US, such a scenario could be realised through a collaboration between CDER, CBER, and 
CDRH; the management of such an ad hoc qualification pathway could be delegated to one of the 
three FDA centres or operated under a collaborative model. This would be more complicated in 
Europe, given that no central authority for medical devices exists. 
 

6.5. Adapting the existing qualification pathways to in silico methodologies 
The least disruptive approach to the need for a regulatory pathway for in silico methodologies is to 
embed it into the existing qualification pathways.  The FDA provides a qualification pathway for 
medical device development tools and drug development tools, whereas the EMA provides it only 
for drug development tools. Qualifying a new methodology is not mandatory, but it is highly 
recommended, especially for innovative methodologies. Seeking qualification for a method provides 
an early engagement with the regulatory agencies and will facilitate the integration of this tool into 
various product development.  

Currently, a new methodology is qualified for regulatory use by first requesting qualification advice 
on the process intended to be used to demonstrate the validity of the new methodology in that CoU.  
If the authority agrees with the approach, the next step is to conduct the planned validation studies 
and request a formal qualification opinion. A positive draft qualification opinion is made public for 
debate if the validity evidence is deemed adequate. If no criticisms emerge from the experts, it is 
confirmed in its final form. A developer can use that methodology to produce evidence in a marketing 
authorisation application for a new product without providing additional information on the 
methodology. 
Existing qualification pathways are separated by type of medical product: pathways for drug 
development tools (e.g., small molecules, biologics, ATMPs, microbiome-derived products), and 
medical device tools.  They currently focus on clinical validation of the methodology rather than on 
its technical validation.  For example, in a recent qualification opinion of EMA on a digital health 
methodology,38 the only reference to the technical validity of the new methodology is in a footnote, 
and the only quantitative requirement is: “The length and velocity of the strides should be accurately 
measured with an error at 1 sigma (68% confidence interval) under 2.5 %.” 

One major limitation of this approach is that qualification pathways are not available for all types of 
products worldwide. Qualification procedures exist both in the EU and in the US. However, it should 
be noted that while the FDA provides a qualification procedure for new methodologies used to 

 
38 https://www.ema.europa.eu/documents/scientific-guideline/qualification-opinion-stride-velocity-95th-centile-

secondary-endpoint-duchenne-muscular-dystrophy_en.pdf  
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develop new drugs39 and new medical devices40 in the EU, such a pathway is available only for 
methodologies used to develop new drugs.41 There are no qualification pathways for medical device 
development tools in Europe, a major hurdle when advanced, complex, innovative methodologies 
such as in silico methodologies are being proposed. Another issue is the focus of existing scientific 
advisory panels on the clinical validation aspects. In silico methodologies require a thorough 
credibility assessment, requiring experts to evaluate the dossier properly. Therefore, the use of 
existing qualification pathways also for in silico methodologies would require the extension of the 
panels to include experts in computational methodologies. 
Another issue is that in silico methodologies are sometimes developed to address a specific use case 
relevant only to that product. In such a case, it would be more convenient to include the evidence of 
credibility for the in silico methodology in the marketing authorisation dossier rather than undertaking 
a separate qualification procedure. 
 

6.6. Essential Good Simulation Practice recommendations 
- Regulatory agencies should increase the interdisciplinarity of scientific advisory panels and 

develop targeted re-training programs for their staff on the opportunities and risks that 
innovative technologies pose. 

- Regulatory agencies should explore whether existing qualification pathways need to be 
adapted to properly include in silico methodologies, or if it would be more convenient to 
create new qualification pathways for these development methodologies. 

 
  

 
39 https://www.fda.gov/drugs/development-approval-process-drugs/drug-development-tool-ddt-qualification-programs  
40 https://www.fda.gov/medical-devices/science-and-research-medical-devices/medical-device-development-tools-mddt  
41 https://www.ema.europa.eu/en/human-regulatory/research-development/scientific-advice-protocol-assistance/qualification-novel-methodologies-medicine-development-0  
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7.1. Introduction 

Two intersections exist between in silico methodologies and Health Technology Assessment (HTA).  
The most obvious is when in silico methods are used as predictive Software as Medical Devices 
(SaMD), e.g., as clinical decision support systems.  In such cases, HTA is used, like any other medical 
technology, to evaluate if its adoption is cost-effective and its clinical appropriateness (criteria under 
which a certain intervention is properly prescribed to a patient; according to the Italian Medicine 
Agency (AIFA), appropriateness is defined as “adequacy of the actions adopted to manage a disease, 
concerning both the patient’s needs and the correct use of resources” (Garattini and Padula, 2017)). 
A second intersection is when the use of In Silico Trials in the regulatory qualification of a medical 
product impacts the HTA assessment of that new product.  Using In Silico Trials to replace, reduce 
or refine human experimentation could improve the ability to detect change (which would turn into a 
more sensitive assessment of differences in efficacy/performance). It could also provide an 
efficacy/performance assessment closer to real-world effectiveness, as the use of virtual patients may 
make it easier to explore the efficacy of sub-groups under-represented in clinical trials.  In addition, 
in silico methodologies could reduce or replace Phase 4 trials, produce early estimates of quantities 
of interest for the HTA assessment of medicinal products, and support the so-called early discourse 
on HTA.  This second perspective is the focus of this chapter. 
 

7.2. Assessing in silico methodologies for HTA 
In terms of both methodology and application sectors, modelling and simulation is a constantly 
expanding field. As the models evolve in complexity and increased uptake, it becomes essential to 
have clarity on the most appropriate tools for the evaluation of in silico methodologies, especially 
those that can contribute to health technology assessment (HTA). 
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Developers often make very strong claims with poor reporting and/or a weak verification/validation 
process of the models. These tools still have a long way to go in terms of implementation and public 
adoption, as well as rigour in their use, which can be inconsistent and unbalanced at the moment 
(Musuamba et al., 2021). This chapter aims to provide input on the scientific evaluation of in silico 
methodologies of health interventions (drugs and other technologies) from the HTA point of view 
and the role that such technologies can play in HTA. 
 

7.3. Introduction to Health Technology Assessment (HTA) 
HTA is a multidisciplinary process that uses explicit methods to determine the value of health 
technology at different points in its lifecycle. The purpose is to inform decision-making to promote 
an equitable, efficient, high-quality health system42. In many countries, it is now common to perform 
this systematic and multidimensional evaluation of health technologies aimed at informing coverage, 
reimbursement, or pricing decisions within public healthcare systems. 

The process is formal, systematic, and transparent, using state-of-the-art methods to consider the best 
available evidence. The dimensions of value for a health technology may be assessed by examining 
the intended and unintended consequences of using a health technology compared to existing 
alternatives. These dimensions often include clinical effectiveness, safety, costs and economic 
implications, ethical, social, cultural, and legal issues, organisational and environmental aspects, and 
wider implications for the patient, relatives, caregivers, and the population. The overall value may 
vary depending on the perspective taken, stakeholders, and decision context. 
HTA can be applied at different points in the lifecycle of health technology, i.e., pre-market, during 
market approval, post-market, and through the disinvestment of health technology. The approach and 
methods used in each of these moments will be different and depend on the available evidence 
(whether primary or secondary data) and the decision to be made about the technology.  
Whilst licensing approval is mainly focused on the technical and safety profile of the medical device, 
HTA bodies have different interests and, therefore, different evidence requirements. Normally, it’s 
aimed at informing policymakers (and decision-makers in general) of the rationale allocation of 
resources within finite budgets to the funding (or using) of healthcare interventions. For this reason, 
data required for market access might go beyond those used or developed for licensing, particularly 
in medical devices, where regulatory requirements have historically been low. 

This additional evidence generation could also be worthwhile from the perspective of the 
manufacturer as with prepaid financing mechanisms for health systems, either through general 
taxation or private/social insurance, market prospects for medical technologies companies are 
strongly influenced by third-party payers’ coverage. For example, if a CE mark has been granted, this 
does not imply that the product will be available to patients everywhere in the EU. If the HTA 
assessment leads to declined public reimbursement in a particular country, the vast majority of 
patients cannot afford the product in that country. 
It is important to mention that “health technology” is a broad concept. The accepted international 
definition of a health technology is an intervention developed to prevent, diagnose, or treat medical 
conditions; promote health; provide rehabilitation; or organise healthcare delivery. The intervention 

 
42 HTA Glossary. International Network of Agencies for Health Technology Assessment (INAHTA), Health Technology Assessment 

international (HTAi) and other partner organizations. Available at: http://htaglossary.net/HomePage  
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can be a diagnostic test, device, medicine, vaccine, procedure, program, or system43. As we explained 
in Chapter 2, in silico technologies can be used as medical devices, as they are used in the diagnostic, 
prognostic, or therapeutic process. Otherwise, they can be used to evaluate the safety, 
efficacy/performance, prescriptive appropriateness, and cost-effectiveness (HTA) of a new medicinal 
product, whether a medical device or a drug. This chapter will mainly focus on this second use, 
touching on the first in the final section of future challenges.  
Last, it is worth mentioning that modelling and simulation methods are also frequently used to 
evaluate different types of (implemented) medical interventions, often in the context of HTA. These 
studies have mainly been used to supplement systematic reviews to increase the usefulness of the 
evidence summary. Uncertainty about the optimal choice among available interventions for important 
patient-relevant outcomes may persist even after synthesising the best available evidence. Indeed, 
decision-makers are increasingly interested in complementing the results of systematic reviews of 
empirical evidence with information from modelling and simulation studies. That is, integrating 
empirical evidence on benefits and harms, values (preferences), and/or resource utilisation while 
accounting for all relevant sources of uncertainty (Dahabreh et al., 2008, 2017). Some of the most 
frequent applications of this type of modelling and simulation are used: 
- to synthesise data from disparate sources (modelling provides mathematical tools for evidence 

synthesis and the assessment of consistency among data sources), 
- to make predictions (“interpolations”, forecasts, “extrapolations”, prioritisation and planning),  

- to support causal explanations and infer the impact of interventions, or  
- to inform decision-making (about patient-level care, drug or device licensing, health care policy 

or the need to conduct additional research (Dahabreh et al., 2017). 
Although this specific scenario of modelling and simulation based on the combination of already 
existing evidence/data could be considered an in silico methodology, it will not be included in this 
chapter as there are good and updated reviews on that (Dahabreh et al., 2017, 2008; Jalali et al., 2021).  
 

7.4. In silico methodologies as a source of evidence 
Science generates evidence through observation, deduction, and induction. Simulation, like 
deduction, starts with specified assumptions regarding a proposed system and generates data suitable 
for analysis by induction. However, this data does not come from direct observation in the real-world 
(Stahl, 2008). 
These assumptions can be designed according to observed data and predicted as a function of the 
experimentally observed variability (phenomenological) or by leveraging some pre-existing 
knowledge about the physics, chemistry, physiology and biology of the phenomenon being modelled 
(Viceconti et al., 2020b). 
In silico methodologies can be a source of evidence when developing or validating a health 
technology, a pharmaceutical product or a medical device (Model-based medical results or 
Computational modelling and simulation results). These are predictive computer models that are used 
to provide evidence in support of the safety and/or efficacy/performance of a medicinal product, 

 
43 HTA Glossary. International Network of Agencies for Health Technology Assessment (INAHTA), Health Technology Assessment 

international (HTAi) and other partner organizations. Available at: http://htaglossary.net/HomePage  
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during its marketing authorisation process. It can also be used during any assessment phase through 
the technology lifecycle and, thus, become part of the evidence to be used for HTA as well. 
Methodologies and tools used to produce regulatory evidence are usually qualified by the regulator 
or certified according to a specific technical standard such as, for example, the ASME VV-40 for the 
use of computational modelling to evaluate medical devices44. 

 
7.4.1. Medical Devices and Interventions 

Computational modelling and simulation can help to increase the scientific evidence for evaluating 
high-risk medical products and interventions, especially when they enable replacing, reducing and 
refining nonclinical in vitro / ex vivo experiments, nonclinical animal studies or clinical human studies 
in case of ethical issues and, time or costs constraints. 

It is also particularly significant with the new medical device regulation45 of the European 
Commission where scientific evidence used to assess high-risk medical devices must be based on 
methodologically sound trials, which may be supplemented with alternative evidence sources such 
as computational modelling and simulation (Olberg et al., 2017). 

 
7.4.2. Pharmaceutical Products 

The clearest indication for using simulation methods is when direct experimentation via randomised 
controlled trials (RCT) is impossible due to cost, time, or ethical constraints. In this regard, RCTs can 
be considered a form of simulation as it represents and simplifies the system under study. However, 
computer simulations of these trials typically decrease time and cost, besides overcoming some 
ethical restrictions of experimentation on humans. These ethical limitations can mainly be found 
when a question needs exploring (effects of exposure), but conducting the trial would require 
exposing a vulnerable group to unacceptable risks (Stahl, 2008). 
Computational methods aim to complement in vitro and in vivo tests to minimise the need for 
animal/human testing, reduce the cost and time of toxicity tests, and improve toxicity prediction and 
safety assessment. In silico toxicology encompasses simulation tools for biochemical dynamics and 
modelling tools for toxicity prediction. They are useful in drug design to determine how drugs should 
be altered to reduce their toxicity. In turn, this knowledge can be used for the evaluation of 
pharmaceuticals and to enrich clinical evidence. 

For example, there are methods for predicting outcomes based on chemical analogues with known 
toxicity. On the other hand, researchers also use dose-response or time–response models, which 
establish relationships between doses or time and the incidence of a defined biological effect (e.g., 
toxicity or mortality) (Viceconti et al., 2017). 

 

 
44 https://www.asme.org/codes-standards/find-codes-standards/v-v-40-assessing-credibility-computational-modeling-verification-

validation-application-medical-devices  
45 https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32017R0745  
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7.5. In silico methodologies: product life cycle and HTA 

At the cost of oversimplifying, the development and assessment cycle of any health technology can 
be reduced into different macro-phases: design/discovery, pre-clinical and clinical assessment, 
regulatory assessment, market access and post-marketing assessment.  Decision maker uncertainty is 
high in the Discovery and Design phase when new and emerging health technologies have not yet 
generated any evidence regarding the future value they could bring to the health systems. The more 
we move through the diffusion curve of technologies, the more evidence is generated and uncertainty 
reduced. In silico methodologies have the potential to have a role in all steps of the product life cycle 
(see Table 7.1). 

 
Table 7.1. Potential applications of in silico methodologies along the product life cycle and suitable HTA modality. 

 
 Discovery and 

Design 
Nonclinical and Clinical 
development 

Regulatory 
submission 

Market Access 
and Pricing  

Post-marketing 

Decision 
maker 
uncertainty 

 

HTA modality 

(see Annex for 
Definitions) 

Horizon scanning  Early scientific advice (early 
dialogues), Pre-Commercial 
Procurement 

Initial HTA, 
Public 
Procurement 
of Innovative 
Solutions 

Mainstream 
HTA, Coverage 
and 
Reimbursement 
Policy, Value 
Based Public 
Procurement 

Re-assessment 
HTA 

Potential in 
silico 
methodologies 
applications 

Streamline target 
identification & 
secure proof of 
concept to broadly 
explore potential 
drug combinations 
and identify those 
worthy of being 
progressed into pre- 
and clinical 
development 

Streamline the 
finding of what new 
and emerging health 
technologies have 
the potentiality to 
satisfy identified 
health system unmet 
needs  

! Explore efficacy 
/ performance 
between various 
targets 

! Explore efficacy 
/ performance of 
various 

In silico methodologies to 
be conducted prior to each in 
vivo clinical trial in order to 
optimise the design of "real-
life" clinical trials 

! Explore various regimens 
(dose, number of 
administration(s) per day, 
time between 
administrations, duration of 
treatment) 

! Identify subgroups of 
optimal 
responders/theranostics 
biomarkers or generate 
virtual cohorts with synthetic 
individuals 

! Optimise trial design  

! Optimise health 
technology trial design to 
explore its impact in health 
system quality, sustainability, 
resiliency, efficiency and 
equity based on the limited 
set of trial data 

! Forecast 
value to 
payers by 
predicting the 
real-life health 
technology 
related benefit 
and the 
optimal target 
use case and 
population 

! Benchmark 
competing 
innovative 
health 
technologies 
and off the 
shelf health 
technologies 

 

! Demonstrate 
value to payers 
by predicting the 
real-life 
technology 
related benefit 
and the optimal 
target population 

! Transpose 
Phase 3 trial 
results into a 
virtual population 
representative of 
specific 
geographies and 
context 

! Demonstrate 
value to payers 
by predicting the 
real-life health 
technology 
related benefit 
and the optimal 
target use case 
and population 

! Reassess 
value to payers 
by real world 
benefit and the 
optimal target 
population 

! Benchmark 
competing 
health 
technologies 
taking into 
considerations 
the market 
access of new 
technologies 
and the achieved 
effectiveness in 
the real world  
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combinations of 
targets/treatments 

! Explore 
transability from 
animal models to 
humans 

! Explore efficacy 
/ performance of 
new and emerging 
health technologies 
to satisfy identified 
unmet needs vs. 
doing nothing and 
keeping current way 
of doing. 

➔ Generate virtual 
cohorts with 
synthetic 
individuals 

! Explore various regimens 
and use case of health 
technology application to 
limit any kind of bias during 
the trial once identified the 
optimal target for which the 
unmet need is going to be 
addressed (e.g.: gender, care 
path determinants, social 
determinants, access to 
healthcare data, access to real 
word data, long term effects, 
interaction with other 
interventions, address 
underrepresented groups, 
etc.) 

! Reduce sample size and 
follow-up duration 

! Benchmark 
competing health 
technologies 

! To investigate 
and provide 
empirical 
evidence of 
safety issues 

 

 

7.6. Methodologies for in silico clinical studies 

7.6.1. HTA Health Technology Assessment 
Throughout the product life cycle, the industry increasingly relies on computational modelling and 
simulation to speed development and give further assurance of performance and safety. Still, such 
use is currently limited (Viceconti et al., 2016). According to the results of a survey of medical device 
companies in 2014, computational modelling and simulation were more commonly utilised in the 
early stages of product development or after product commercialisation but rarely to simulate the 
interaction of the device with a laboratory animal or a patient46. 
When in silico methodologies are used as a source of evidence for health technology development, 
extending the traditional HTA that informs coverage/reimbursement decisions to early HTA that 
informs early research, development, and investment decisions (Tummers et al., 2020)  could be of 
great importance, especially for medical devices, where the development process is a costly and 
uncertain undertaking (Ijzerman and Steuten, 2011).  Failed development not only results in a lack of 
economic return for the company but also in higher costs without healthcare improvements for 
society. There are multiple reasons for failed device development, but one important factor is the late 
evaluation of the potential of the device in healthcare practice, usually only after the prototype design 
is finalised. The aim of the early assessment is to reduce the failure rate at each stage of the 
development process, while enhancing the efficiency of R&D and of limited resources use, through 
prioritisation of the innovations most likely to succeed among others. It may also be used to support 
reimbursement claims by providing quantitative input for developing risk-benefit sharing agreements 
(Markiewicz et al., 2014). With improved confidence in modelling results and a better-established 
regulatory framework, the use of in silico evidence as part of the regulatory submission process is 
becoming more common, but it has not entered the HTA arena yet and evidence from in silico 
methodologies is seldom used in HTA. 

 
46 https://avicenna-alliance.com/files/user_upload/Avicenna_Alliance_Position_paper_in_silico_evidence_application_to_Medical_Devices.pdf  
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7.6.2. Discovery, design and pre-clinical stages 
The use of in silico methodologies in the discovery and design stage can have the potential of 
streamline target identification; secure proof of concept; identify those drugs/devices worthy of being 
progressed into pre- and clinical development. Also, streamline the finding of what new and emerging 
health technologies have the potential to satisfy identified health system unmet needs. 
Compared with in vitro, ex vivo, and in vivo experiments, in silico simulations have the advantage of 
being fast, cheap, safe, easy to implement and free of experimental errors. Consequently, they are 
becoming increasingly helpful in designing new technologies and strategies. 

Simulations and computational models allow the effect of the interaction to be examined not only at 
the local level, but in the context of the entire pathway in which the target interacts. To include all 
the features of these complex systems in these pathways, simulation at the biochemical level may be 
a suitable foundation for simulation. In this sense, different computational models have been 
proposed to simulate intercellular interaction at the biochemical and physical levels. By means of this 
type of model, information on the impact of the target on metabolism can be obtained. 

 
Preclinical in silico assays can potentially minimise problems in the translation between experimental 
and clinical research. Moreover, preclinical data can be a valid source to include in a computational 
model to gain more insight into the factors that modulate the response in later clinical phases. For this 
reason, in silico experiments are considered to have a good capacity to make explicit and formalise 
the underlying mechanisms. 

The potential use of in silico methodologies can be particularly important in the chemo-prevention 
and toxicology (Benigni et al., 2020; Valerio, 2009). In silico methodologies are used effectively in 
preclinical studies to optimise dosage administration and predict the overall performance of the 
optimised schedule (Pappalardo et al., 2019). The number of chemicals marketed for human use is 
rapidly increasing. For this reason, computational toxicology models have been developed that 
estimate the event probability of a molecule based on its chemical structure (Quantitative structure-
activity relationship or QSAR).  

The use of in silico experiments to predict toxicological outcomes of drugs and hazard and risk 
assessment is widespread. Such experiments can determine the priority of molecules for in vivo or in 
vitro testing. This prioritisation optimises the testing strategy, potentially minimising the need for 
animal testing (Benigni et al., 2020). 

In this regard, Passini et al. have recently developed software which runs in silico drug trials in 
populations of human cardiac models, simulating populations of human action potentials. Designed 
to predict drug safety and efficacy, the software simulates the effects of drugs on the action potentials 
of cardiac cells. After conducting variable drug-dose response studies, this software provides statistics 
of biomarkers of drug action and adverse drug effects, such as arrhythmias. An in silico trial of 62 
drugs showed that in silico simulations predicted clinical risk with 89% accuracy (Passini et al., 2017, 
2021). In 2011 the US Food and Drug Administration (FDA) approved the first in silico diabetes type 
1 model as a possible substitute for pre-clinical animal testing for new control strategies for type 1 
diabetes. The European Medicines Agency is considering in silico approaches as an alternative to 
animal testing to protect animal health and the environment. 
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7.6.3. Clinical development 

7.6.3.1. Medical devices 
Computational models of the heart based on data obtained from medical imaging of patients have 
made it possible to use simulations to view different strategies for cardiac rhythm configuration. They 
have also made it possible to identify the optimal region for localizing cardiac pacing 47. These models 
are still in an emerging phase to be considered as medical devices for clinical decision-making. 
However, this example serves as an illustration of how such models and simulations can be applied 
in the field of personalized medicine. 
Also, as an example of these developments in the field of patient-level simulation, we find the 
example of blood flow simulation using MRI images and information on blood pressure and blood 
flow. With the CRIMSON software (Arthurs et al., 2021), 3D models of the blood system could be 
created. In this way, different surgical strategies could be used to determine a prognosis and to 
perform an intervention that best preserves blood flow (Ahmed et al., 2021). 

The oncNGS pre-commercial procurement48 aims to develop novel, affordable solutions to provide 
the best Next Generation Sequencing (NGS) tests for all solid tumours/lymphoma patients. The call 
for tender49, launched in December 2021, is challenging the market to address their identified unmet 
need through the provision of an efficient molecular DNA/RNA profiling of tumour-derived material 
in liquid biopsies using pan-cancer tumour marker analysis kit including NGS analysis integrated 
with an in silico decision support system including analytical test interpretation and reporting. The 
oncNGC PCP contract is structured in three phases: 

- Phase 1: Design of the oncNGS solution 

- Phase 2: Technical, analytical and clinical performance validation of the oncNGS complete 
solution prototype at the Supplier’s site 

- Phase 3: Technical, analytical and clinical performance validation of the oncNGS solution in 
the clinical samples in Supplier’s sites and real clinical settings.  

To ensure suppliers keep working on the sustainable dimension of the novel solutions across the three 
phases, they are required to keep up-to-date in silico simulations of their novel panels during both 
Phase 2 and Phase 3 to demonstrate their solutions are affordable ensuring sufficient and 
homogeneous coverage of all the targets in agreement with the business case to be applied in routine 
basis, at each (chemo)therapy cycle to follow clinical response and inspire adaptive therapies. 

7.6.3.2. Pharmaceuticals 
Phase III clinical trials evaluate a new drug in terms of its clinical value (efficacy and safety), its most 
appropriate dose and dosage (posology), as well as other aspects such as adherence and tolerability. 
These in vivo studies are expensive and challenging to conduct, as a large sample size is required. 

By providing a reliable prediction of the Phase III outcomes based on the data collected during the 
Phase II clinical trial, in silico methodologies may increase confidence in investing at this late stage 
of the pre-commercial process.  High-quality in silico methodologies using subject-specific models 

 
47 Non-invasive simulated electrical and measured mechanical indices predict response to cardiac resynchronization therapy - Research 

Portal, King's College, London (kcl.ac.uk) 
48 http://oncngs.eu/  
49 https://ted.europa.eu/udl?uri=TED:NOTICE:624705-2021:TEXT:EN:HTML&tabId=1  
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could be proposed as valid evidence to complement the information from these trials, probably with 
the requirement to carry out studies to confirm the simulated post-marketing outcomes with real-
world data.  

By using in silico methodologies to predict outcomes for potential phase III trials, it is possible to 
optimize both the experimental design and the required sample size. As a result, the development cost 
could be reduced, as well as the time to market (Pappalardo et al., 2019). 
 

7.6.4. Market access and post-marketing assessment 
FFRCT software, developed by the US medical firm Heartflow to measure coronary blockages non-
invasively from computed tomography scans was the first clinical technology based on subject-
specific modelling to get the marketing authorisation from FDA. The software has also received CE 
marking and regulatory approval in Japan. 
What might be relevant from the perspective of decision-makers is the possibility of testing and 
identifying in advance which patients’ subgroups are likely to benefit the most from a novel 
technology (i.e., enhanced patient population stratification) or to investigate and provide empirical 
evidence of safety issues that could emerge as a result of the implementation of the technology with 
consequent streamlined recommendations for a safer and effective indication of use (Ciani et al., 
2017). 
Another relevant example is the stratification of patients with infectious diseases due to multi-drug 
resistant (MDR) organisms. Thanks to the provided research and development services contracted 
through Anti-SUPERBUGS pre-commercial procurement50, ANTI-SUPERBUGS PCP Buyers’ 
Group aims to: 

- Reduce both the costs and the operational impact resulting from infections caused by multi-
drug resistant organisms; 

- Improve the appropriateness of antimicrobial medicine usage;  
- Improve the quality-of-care processes in hospitals; 

- Reduce the community and social care impact of MDR infections acquired in hospitals by 
procuring pre-commercial technologies that will transform current Surveillance and 
Infections control systems into new comprehensive systems. 

The call for tender, launched in November 2019, is challenging the market to address their identified 
unmet need through the provision of an ASB in silico solution comprising a bundle of technologies 
offering different approaches and outputs at a different level of infection management (as 
surveillance, environmental safety, first patient screening and patient early diagnosis). 
Subsequent public procurement of innovative solutions (PPI), already under preparation, will need to 
consider that the current COVID-19 pandemic is exacerbating antimicrobial resistance. Data from 
some EU countries suggest that 6.9% of COVID-19 diagnoses are associated with bacterial infections 
(3.5% diagnosed concurrently and 14.3% post-COVID-19), with higher prevalence in patients who 
require intensive critical care (Strathdee et al., 2020). In silico methodologies offer the advantage of 
increasing the cohort, refining clinical validation, and taking into consideration this new potential use 
case, including intensive care unit (ICU) patients infected by COVID-19 and MDR organisms to be 

 
50 https://antisuperbugs.eu/  
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able to demonstrate value to the buyers by predicting the real-life related benefit and the optimal 
target use case. 
 

7.6.5. Post-marketing assessment 
In silico studies should also be part of adaptive licensing and reimbursement pathways, where access 
and coverage are gradually extended as the evidence-based evolves and benefits are demonstrated in 
clinical research for wider patient populations. This conjunction of interest from regulatory bodies, 
industry, clinics, academia, and even animal-welfare groups has led to the establishment of networks 
and initiatives around the world to promote the development, validation, and use of in silico medicine 
technologies. 
 

7.7. Critical assessment of the in silico approach and limitations 
To present a balanced assessment to consider in future HTA, attention should be drawn to the 
limitations of current in silico simulation tools.  
The limitations of in silico simulation techniques should be considered when considering their use in 
HTA. Primarily, it should be noted that these techniques do not currently allow adequate predictions 
for all chemicals and outcome variables. Of particular relevance is that there are currently no models 
for certain systems or components. 
The adequacy of the model is of particular interest when evaluating complex systems, such as drugs 
with multiple mechanisms of action or the interaction of different drugs in poly-medicated patients.  
More specifically, in silico experimentation, the limitations derived from the reliability, or 
transparency, of the data used to design the model on which the simulations will be performed stand 
out. For example, incorrect training data describing the relationship between dosage and adverse 
events would amplify these errors in the prediction model.  
However, using in silico techniques may add greater uncertainty if it replaces in vivo experimentation. 
This is because assessing the simulation results' external validity is desirable. Recognising the 
limitations of the technology, there is an increasing interest in combining real-time generated 
biological data with in silico predictions in a rational approach to integrating computational tools with 
the experimental setting (Jolivette and Ekins, 2007). Using in silico evidence to reduce or refine in 
vivo or in vitro experimentation can reduce such uncertainty if reliable and valid models are available. 

 
7.8. How to assess evidence from in silico methodologies? 

In the context of product development and evaluation, in silico models of increased complexity are 
often used for similar applications as the ‘simpler’ pharmacometrics models: trial design 
optimisation, dose-finding/selection, extrapolation of drug efficacy and safety, etc.  
For this reason, considering that the model validation processes described in the previous chapters 
have been carried out correctly, it is logical that requirements for their acceptability follow the same 
standards as those already established for models currently included in the regulatory dossier or 
parallel HTA requests.  
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To ensure that technology resulting from in silico experiments is properly evaluated, it is important 
to document these experiments thoroughly. This documentation should allow independent evaluation 
by HTA bodies in the specific contexts of application of the technology. 

When evaluating these experiments, it is important to assess the reliability and relevance of the 
models used, particularly when the models could pose a risk to patients, involve complex systems, or 
when there is a considerable distance between the nature of the input (for example, chemical-physical 
parameters) and the nature or dimension of the output (health symptoms). 

Similar to the assessment of in vitro evidence, it should be possible to assess the following:51 
1) The scope of application of the model, the goodness of fit and predictive ability in relation to 

empirical events in vivo. 
2) The validity of the structure and parameters of the model in a biological sense, as well as the 

degree of modelling of its complexity; moreover, the correspondence of the same or the 
plausibility of the assumptions.  

3) The theoretical basis for the model computations in base. 
4) The uncertainty of the model inputs, in the dimensions of natural variability in vivo, 

reproducibility and reliability. 
5) The sensitivity of the model results to the model's uncertainty.  

6) The sensitivity of the model results to variations in the input parameters.  
To ensure that the model reproduces the results that would be expected in vivo, parameters with 
greater uncertainty and a high or moderate impact on model output should be evaluated. It is also 
important that the model promotors adequately justify any unexpected results by explaining them 
based on the model structure, the available data, or the state of understanding of the modelled 
phenomenon. 

To verify that there are no programming or logical errors, the source code of the algorithm and/or 
operations and processes executed by the model should be made available. 
 

7.9. Challenges for the future 
As it was stated at the beginning, in silico technologies could also be a health technology itself or part 
of health technology, that is Digital Patient or Digital Twin technologies. These are predictive 
computer models that are used as decision-support support systems by a clinician in treating an 
individual patient, which is in a much more incipient phase of development and assessment. From a 
regulatory point of view these are considered Software as a Medical Device, but in addition to the 
specific requirements in terms of Software Quality Assurance such medical devices should be 
certified for their predictive accuracy, what is called model credibility.  Computational modelling and 
simulation results might eventually be included in regulatory submissions. In that case, the 
incorporation of these modelling results evidence needs to follow standards of data/evidence 
generation, analysis, and reporting to enable the regulatory bodies (and HTA agencies) to efficiently 
perform an adequate assessment of the submitted material. 

 
51 https://www.oecd.org/chemicalsafety/risk-assessment/guidance-document-on-the-characterisation-validation-and-reporting-of-

physiologically-based-kinetic-models-for-regulatory-purposes.pdf 
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In 2021, the Horizon Europe Framework Horizon program envisages a line of action to provide 
regulatory agencies and HTA bodies with the necessary tools to exploit the potential of synthetic 
data52 for decision making in the field of regulation and health technology assessment.  Clearly, one 
of the challenges of research in this area is to determine the evidence value of this type of information 
source. Overall, there is a need for rigour and transparency on the one hand in the methods used for 
in silico model development and validation, and on the other hand their wider acceptance as a valuable 
source of evidence by the scientific community including academic researchers, the pharmaceutical 
industry, regulatory bodies and HTA/payers (Musuamba et al., 2021). A need exists for documenting 
the available tools, the manners they are being used, the conditions for their adequate use and the 
challenges encountered. The current hurdles for the wider acceptability of in silico models as a 
reliable source of evidence for high (HTA) impact applications in drug/medical devices development 
include:  

- lack of common standards and best practice documents commonly accepted by all relevant 
stakeholders,   

- the lack of important digital infrastructure to carry out the in silico methodologies (e.g., fast 
communication networks and high computing power and storage capacity) that could 
compromise the cost-effectiveness of the resulting health technologies and the coverage, 
reimbursement or pricing decisions by the public healthcare systems (Leo et al., 2022), 

- the protection of individual citizens from the harmful use, also due to security breaches, of 
their personal data. An approach to solving the challenge surrounding big health data sharing 
is the generation of synthetic data created from real data by adding statistically similar 
information,  

- biases in algorithm definition and poor training of analysts may pose risks to equity, 

- poor communication between stakeholders to that regard,  
- the deficit in the skills and knowledge essential to perform HTA based on in silico 

methodologies along the technology life cycle, and  

- relatively slower development of regulatory science and HTA as compared to commercial 
solution developments. 

Also, there is currently an unmet need for HTA guidance/best practice documents clearly describing 
standards for mechanistic in silico model development, evaluation and reporting considering the 
specificities not only in their structure, the data sources for their construction and evaluation but also 
in the software and algorithms used for their implementation. 

Finally, further research is needed to understand the promises of the use of in silico methodologies 
for the development and evaluation of health technologies, to improve their reliability, acceptance, 
and diffusion and to understand their expected impact on licensing and reimbursement decisions, as 
well as the full role that can have HTA in the different phases of the application of in silico 
methodologies. 
 

 
52 Synthetic data is information that's artificially generated rather than directly captured by real-world events. Typically 
created using algorithms, synthetic data can be deployed to validate mathematical models and to train machine learning 
models (https://www.infoq.com/articles/overcoming-privacy-challenges-synthetic-data/) 
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7.10. Definitions of various HTA modalities  

Horizon scanning (Simpson and EuroScan International Network, 2014): this is the systematic 
identification of new and emerging health technologies that have the potential to impact health, health 
services, and society; and which might be considered for an HTA. Identification can be: 
Proactive: where a range of sources are searched for information on new and emerging health 
technologies. 
Reactive: where systems are in place that allows stakeholders, health professionals, developers and/or 
consumers to inform the Early Awareness and Alert (EAA) system on new and emerging health 
technologies 

Pre-commercial procurement (PCP)53,54: public procurers can drive innovation from the demand side 
by acting as technologically demanding customers that buy the development and testing of new 
solutions from several competing suppliers in parallel to compare alternative solution approaches and 
identify the best value for money solutions that the market can deliver to address their needs. PCP 
consists of a procurement of Research & Development (R&D) services that involves risk-benefit 
sharing at market conditions and in which a number of companies develop in competition new 
solutions for mid-to-long-term public sector needs. The needs are so technologically demanding and 
in advance of what the market can offer that either no commercially stable solution exists yet, or 
existing solutions exhibit shortcomings which require new R&D. R&D is split into phases: solution 
design, prototyping, original development, and validation/testing of a limited set of first products. 

Early scientific advice (early dialogues)55 (Tummers et al., 2020; Ijzerman and Steuten, 2011): is a 
non-binding scientific advice, before the start of pivotal clinical trials (after feasibility / proof of 
concept study), in order to improve the quality and appropriateness of the data produced by the 
developers in view of future HTA assessment / re-assessment. Early HTA is increasingly being used 
to support health economic evidence development during early stages of clinical research. Such early 
models can be used to inform research and development about the design and management of new 
medical technologies to mitigate the risks, perceived by industry and the public sector, associated 
with market access and reimbursement. 
Initial HTA: the early phase HTA helps technology owners or investors make evidence‑informed 
decisions about further investment in the development of medical device and other health 
technologies, especially with expected public reimbursement or procurement. It attempts to provide 
appropriate value judgement and assessment of health financing scenarios of innovative technologies 
before moving ahead with the development process or investing in technology. 

Public procurement of innovative solutions (PPI)56: PPI happens when the public health systems 
bodies and providers use their purchasing power to address their identified challenges acting as early 
adopter of innovative solutions which are not yet available on large scale commercial basis, that are 
nearly or already in small quantity in the market and don't need new R&D. 

 
53 https://digital-strategy.ec.europa.eu/en/policies/pre-commercial-procurement  
54 {COM(2007) 799 final}, SEC(2007) 1668, COMMISSION STAFF WORKING DOCUMENT accompanying document to the  

COMMUNICATION FROM THE COMMISSION TO THE EUROPEAN PARLIAMENT, THE COUNCIL, THE EUROPEAN 
ECONOMIC AND SOCIAL COMMITTEE AND THE COMMITTEE OF THE REGIONS Pre-commercial Procurement: Driving 
innovation to ensure sustainable high quality public services in Europe Example of a possible approach for procuring R&D services 
applying risk-benefit sharing at market conditions, i.e. pre-commercial procurement, Brussels, 14.12.2007 

55 https://www.eunethta.eu/ja3services/early-dialogues/  
56 https://digital-strategy.ec.europa.eu/en/policies/ppi  
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Mainstream HTA (Reuzel and Van Der Wilt, 2000): mainstream HTA entails scientific research into 
the effects and associated costs of health technologies and should support the decision-makers to 
decide on questions as ‘Is this technology better than the technology currently used?’, ‘How does it 
compare with alternatives in terms of effectiveness, appropriateness and cost of technologies?’ (see 
chapter 7.3). 

Coverage and Reimbursement policy57: in decision-making processes regarding the reimbursement 
of medicines, it needs to be established whether a medicine should be considered eligible for 
reimbursement. Subsequently, if the medicine is classified as ‘reimbursable’, it needs to be assessed 
how much of the price the public payer should (or can) cover. Therefore, setting a price (pricing) and 
deciding on the level of coverage by public payers (reimbursement) are strongly interlinked. The 
assessment process usually includes criteria such as efficacy, effectiveness, safety, ease of use, and 
added therapeutic value, besides cost-effectiveness. In some European countries, the same decision–
making process is now used for digital therapeutics58.  

Value-Based Public Procurement59: when public health systems bodies and providers adopt off-the-
shelf technologies and services and design the relationship with their technology and service 
providers in agreement to the relationship they have with the payers and to the value the adoption of 
such off-the-shelf technologies and services bring to the whole healthcare provision chain (from the 
patients through the payers). 
Re-assessment HTA60: as the technology matures, changes occur in the technology itself, and there 
is new evidence available or other factors that can diminish the currency of HTA findings and their 
utility for health care policies.  As such, HTA can be more of an iterative process than a one-time 
analysis.  Coverage and reimbursement policies and subsequent value-based public procurement 
contracts shall consider the results of HTA reassessments. 

 
7.11. Essential Good Simulation Practice recommendations 
In silico methodologies can provide evidence to be used in HTA for: 

- demonstrating value to payers by predicting the real-life benefit and the optimal target 
population for drugs or medical devices 

- transposing Phase 3 trial results into a virtual population representative of specific 
geographies and context 

- Benchmarking competing health technologies taking into considerations the market access of 
new technologies and the achieved effectiveness in the real world. 

  

 
57 J. Bouvy, S. Vogler (2013) Update on 2004 Background Paper, BP 8.3 Pricing and Reimbursement Policies, WHO Collaborating 
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8. ETHICAL REVIEW OF IN SILICO METHODOLOGIES 
 

Chapter editors: 

- Emmanuelle M. Voisin (Voisin Consulting Life Sciences) 

- Cecile F. Rousseau (Voisin Consulting Life Sciences) 

- Elisabetta Poluzzi (Alma Mater Studiorum – University of Bologna) 

 

Contributors (random order): 

- Marco Viceconti (Alma Mater Studiorum – University of Bologna) 

- Maria Cristina Jori (Mediolanum Cardio Research) 

- Alexandre Serigado (Voisin Consulting Life Sciences)) 

 

8.1. Introduction 

Before any experimental study can be conducted on humans, the study design must be approved by 
an independent body responsible for protecting the safety, well-being and rights of the human subjects 
involved in the experimentation. These bodies are called Independent Ethics Committees in Europe 
and Institutional Review Boards in the USA; hereinafter, we will use the acronym IEC/IRB to indicate 
them. 
Existing regulatory, legal and ethical frameworks for clinical trials were developed because of well-
established medical research practices involving human subjects. Rules were set to protect human 
research subjects from hazards. By contrast, in silico medical research relies on computational 
resources and data - using patient data to generate and validate computer models, which will be used 
to predict the necessary evidence. 

 
8.2. Short overview of ethical review in clinical trials 

Research involving humans originated in a dark past, where human rights, safety and well-being were 
disregarded. And that past is not necessarily so remote (see, for example, the Tuskegee Study of 
Untreated Syphilis in the Negro Male61). With the progressive adoption of the Declaration of Helsinki 
and the establishment of the Good Clinical Practice62 (GCP), sponsors and Investigators are required 
to ensure the proper conduct of the clinical trials. 
Ethical aspects of any clinical trials are ensured by IEC/IRBs. These entities, which are either local 
or central, aim to ensure the safety, rights, and well-being of all subjects, whether healthy volunteers 
or patients, enrolled in any clinical experimentation. Although rules have been originally defined for 
trials on medicinal products63, any trial on experimental interventions (e.g., on surgical procedures 
and on medical devices) must be submitted to IEC/IRBs before starting it. Also, prospective and 

 
61 https://en.wikipedia.org/wiki/Tuskegee_Syphilis_Study  
62 https://www.ema.europa.eu/en/ich-e6-r2-good-clinical-practice  
63 https://health.ec.europa.eu/medicinal-products/clinical-trials/clinical-trials-regulation-eu-no-5362014_en  
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retrospective observational studies are submitted to IEC/IRBs to assess risks from additional 
diagnostic procedures, data protection, and the relevance of the research question.  
IEC/IRBs review clinical protocol and the corresponding amendments, the written information on 
aims, procedures, and rights to be provided to subjects, and the relevant written informed consent 
forms. They also oversee the enrolment process, including procedures, compensation payments 
(when appropriate), insurance coverage, the Investigator’s qualifications, etc. IEC/IRBs are therefore 
involved before, during, and after the clinical trial.  

 
8.3. The ethical benefits of in silico methodologies 

In silico methodologies aim to refine, reduce, and replace experimental studies conducted in vitro, ex 
vivo, or in vivo on animals or humans and provide evidence on medical products' safety, efficacy, 
and performance. 
If we focus on in silico methodologies aimed to refine, reduce, and replace human experimentation, 
several potential ethical benefits can be associated with these new technologies. 

8.3.1. Refinement 

Refining human experimentation means reducing the risks to which the enrolled subjects are exposed 
but also increasing the benefit/risk ratio of the experimentation. This means maximising the 
regulatory utility of the information obtained by exposing the enrolled subjects to such risks.  In silico 
methodologies have been proposed to stratify patients better, improving the inclusion and exclusion 
strategies. This may produce ethical benefits when it helps to identify subjects at higher risk of 
adverse effects. Where this does not bias the conclusions of the study, such patients can be excluded; 
alternatively, their identification allows the adoption of measures to mitigate the risk, such as 
additional monitoring.  In some cases, in silico methodologies can also directly reduce the risk for 
enrolled subjects.  For example, studies in cardiology that require an invasive fractional flow reserve 
(FFR) measurement can now be conducted using CT-based virtual FFR models that provide a non-
invasive estimate of the FFR for each subject enrolled. 

8.3.2. Reduction 
When an in silico methodology can reduce the number of subjects who need to be enrolled, and thus 
the number of persons who are exposed to the risks that the study involves, this represents a direct 
ethical benefit, according to the 6th principle of the Declaration of Helsinki “In medical research 
involving human subjects, the well-being of the individual research subject must take precedence 
over all other interests”.  The most obvious examples are in silico-augmented clinical trials, where 
virtual and physical patients are combined (Haddad et al., 2017). Other examples are those cases 
where the primary outcome is not easily observable, and thus a surrogate biomarker is used to measure 
response or efficacy.  In studies on new drugs to prevent fragility bone fractures caused by 
osteoporosis, areal bone mineral density is frequently used as a surrogate of the fracture endpoint. A 
CT-based digital twin can predict the absolute risk of fracture for each patient enrolled; because this 
predicted quantity has much higher discriminant power, the number of patients enrolled in the clinical 
studies to achieve statistical power is much smaller (Viceconti and Dall’Ara, 2019). 

8.3.3. Replacement 

The complete replacement of human experimentation is currently not considered an option.  
However, there are several cases where human experimentation is impossible and others where a 
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partial replacement might be an option.  Human experimentation is impossible, for example, in 
assessing the MRI safety of implantable devices (e.g., heating of the device due to high-frequency 
electromagnetic pulses); here in silico methodologies may provide evidence more reliable than animal 
experiments can provide (Baretta et al., 2020). Scenarios of partial replacement are those where, for 
example, the digital twin of the subjects enrolled could be used to form a placebo arm in studies 
where the placebo is considered unethical. Also, in silico methodologies can reduce the numerosity 
of a clinical required to achieve statistical significance (Haddad et al., 2017). The last scenario where 
in silico methodology may introduce ethical benefits is in studies where, for several reasons, the 
necessary diversity (of ethnicity, gender, age, physical conditions, etc.) is difficult to achieve with the 
necessary statistical relevance. In silico- augmented clinical trials could be designed not to increase 
the statistical power of the study but rather to increase it by including tailored virtual patients of such 
underrepresented sub-groups. 
 

8.4. The ethical review of studies involving in silico methodologies 
When assessing a medical product involves in silico methodologies, are there special attentions that 
the IEC/IRB need to have in their reviews? To be answered, this general question must be articulated 
into more specific questions. 

What is the role of the IEC/IRB when in silico methodologies are used to refine (i.e., to improve 
rather than to reduce or replace) human studies?  We believe that the IEC/IRB is responsible for 
evaluating if a proper risk analysis has been conducted as part of the in silico methodology 
implementation and if this in silico approach reduces the risks for the subjects enrolled in the clinical 
trial or helped mitigate the adverse effects in case such risks materialise. In other words, the IEC/IRB 
needs to evaluate the ethical impact of in silico methodologies as they do for any other study 
methodology. However, this raises an issue of expertise in the current composition of IEC/IRB: such 
evaluation for in silico methodologies may require expertise rarely present in a typical IEC/IRB. In a 
time where studies involving in silico methodologies may still be a rarity, IEC/IRB may circumvent 
this problem by collecting, in such cases, the opinion of external experts to inform their own 
decisions. Still, it is reasonable to expect the inclusion of technology experts in IEC/IRB in the long 
run. Submissions to the IEC/IRB should be extended to include also the technical information 
necessary to evaluate such in silico methodologies. 

If in silico methodologies are used to reduce the number of subjects enrolled in human studies, we do 
not see any significant change in how the IEC/IRB operates. In this case, all the concerns are on the 
reliability of a study's evidence, which concerns the regulatory bodies, not the IEC/IRB. Any means 
that can reduce the number of subjects enrolled without impacting the statistical relevance of the 
study should be seen positively from an ethical point of view. 
The case where in silico methodologies replace human experimentation is the most complex.  

The first question is: when a study involves only in silico methodologies (for example, in full 
replacement scenarios), is the IEC/IRB review necessary, considering no human subjects are involved 
in the study? We believe the answer is no, with one notable exception. IEC/IRBs ensure the safety of 
human subjects involved in the study; if no human subject is involved, there is no need for the 
IEC/IRB review. The only exception is when we need to use clinical data to design, inform, or 
validate the in silico methodology.  In this case, the IEC/IRB review is required to ensure that the 
patient's data is treated according to the laws and the ethical principles that regulate these aspects. 
Frequently the clinical data to be used in the modelling activities are not collected on purpose; this 
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poses the complex issue of re-using clinical data collected for clinical purposes or for research 
purposes different from the scope of the current study and whether an additional informed consent of 
the patients originally involved may be required.  Because of its importance, this topic is discussed 
in greater detail below in a dedicated section. 
But as we explained before, the replacement is only partial in some cases. And this frequently occurs 
when a portion of the study poses ethical problems (e.g., placebo, children, rare diseases). We suggest 
that such studies should first be subject to a regulatory advice procedure. The regulatory opinion on 
the appropriateness of the study design64, including the partial replacement of some human 
experimentation using in silico methodologies, should be acquired by the IEC/IRB, which would 
focus its evaluation of the ethical implications of the specific implementation of the study design, 
relying on the regulatory opinion for what matter the reliability of the evidence such study will 
produce. However, in this case, as in the previous one, the ethical evaluation will be difficult without 
the involvement of some technology experts. What we wrote before for the refinement scenario is 
valid also here: while initially, the IEC/IRB may rely on the opinions of external experts, in the long 
run, it is reasonable to expect the inclusion of technology experts in IEC/IRB. 

 
8.5. Data protection 

With real-world data increasing, it is tempting to use them to build and validate computational 
models. In addition, digital twins in healthcare are informed by the clinical data of individual patients. 
For such applications, developers must account for data protection laws such as, for example, the 
European General Data Protection Regulation65 (GDPR) or the USA Health Insurance Portability and 
Accountability Act66 (HIPAA).  
An additional complexity for European developers is that the GDPR did acknowledge that the 
secondary use of clinical data for research purposes could justify some derogation but made no 
detailed provisions, leaving the member states to define the specific legislation. This has led to a very 
complex situation, where each country member of the European Union has different legislation.  The 
main problem is not that of privacy (in most cases, the clinical data used in in silico methodologies 
are irreversibly anonymised) but rather that of data ownership. The European GDPR states clearly 
that the clinical data are owned by the patient, and the clinical institution where the data were 
generated is allowed to treat these data only for the necessary provision of care.  Any secondary use 
must be explicitly authorised by the patient, the data owner, with informed consent.  The point of 
debate is the granularity of such consent. The orientation of some privacy authorities in EU member 
states is that consent is given for each research project; thus, if the Investigator plans to reuse the 
clinical data for another research, he or she needs to collect new informed consent from each patient.  

The recent EU Data Governance Act promises to solve this problem. This new EU-wide regulation, 
which will enter into force in September 2023, provides rules and safeguards to facilitate the re-use 
of data whenever possible. The main mechanism is that of data altruism. Data altruism is about 
individuals and companies giving their consent or permission to make available data that they 
generate – voluntarily and without reward – to be used in the public interest. 

 
64 As explained in chapter 6, the regulatory pathways for in silico methodologies are only partially defined and tend to differ between 

USA and Europe. 
65 https://gdpr.eu/  
66 https://aspe.hhs.gov/reports/health-insurance-portability-accountability-act-1996  
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8.6. Credibility assessment in the IEC/IRB review 
In most cases, the IEC/IRB is not called to directly evaluate the evidence of the credibility of the in 
silico methodologies. When the study results are to be used as part of a regulatory submission for 
marketing authorisation, it is usually expected that before using an in silico methodology for a specific 
context of use, a qualification opinion on such use needs to be obtained by a regulatory agency.  In 
such a case, the qualification opinion should be attached to the IEC/IRB submission. It should be 
noted that while in the USA, the FDA can provide pathways for the qualification of in silico 
methodologies for medical devices and drugs development tools, in the EU, such qualification 
pathway is available only for drug development tools. 
However, it could be a good practice to include any evidence of credibility available in the IEC/IRB 
submission. For example, if the credibility of the in silico methodology has been assessed using the 
ASME VV-40:2018 technical standards, the result summary of this assessment should be included in 
the submission. 
 

8.7. Essential Good Simulation Practice recommendations 
In silico methodologies offer several potential ethical benefits: 

- Refining human experimentation means reducing the risks to which the enrolled subjects are 
exposed but also increasing the benefit/risk ratio of the experimentation, maximising the 
regulatory utility of the information obtained by exposing the enrolled subjects to such risks.   

- When an in silico methodology can reduce the number of subjects who need to be enrolled, and 
thus the number of persons exposed to the study's risks, this represents a direct ethical benefit. 

- In silico methodologies can provide an ethical alternative where human experimentation is 
unethical. 

- In silico methodologies can help in including in clinical studies the necessary diversity (e.g., of 
ethnicity, gender, age, physical conditions) that, for any reason, might be difficult to achieve 
experimentally. 

- IEC/IRB should evaluate the ethical impact of in silico methodologies as they do for any other 
study methodology. With two special cases, both related to its use to replace human 
experimentation: 

o For studies where the in silico methodologies are used to partially replace human 
experimentation, the ethical review of the study by the IEC/IRB is necessary. Still, it 
should be based on the regulatory qualification opinion on the in silico methodology. 

o On the contrary, for studies that involve only in silico methodologies and no human 
experimentation, the IEC/IRB review is not necessary, with the notable exception of the 
ethical management clinical data to design, inform, or validate the in silico methodology. 

- To properly assess the ethical implications of in silico methodologies, IEC/IRB also need 
technical expertise. Initially, the IEC/IRB may rely on the opinions of external experts. Still, in 
the long run, it is reasonable to expect the inclusion of technology experts in the IEC/IRB.  
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9. THE SPONSOR 
Chapter editors: 

- Maria Cristina Jori (Mediolanum Cardio Research Srl) 

- Roberta Bursi (InSilicoTrials Technologies) 

 

Contributors (random order): 

- Marco Viceconti (Alma Mater Studiorum – University of Bologna) 

- Raphaelle Lesange (VPH institute) 

- Axel Loewe (Karlsruhe Institute of Technology) 

 

9.1. Introduction 
For the purpose of this document, we define Sponsor as “an individual, company, institution, or 
organisation that decides to use computer simulations in a preclinical or clinical trial, aimed to a 
regulatory or decision-making purpose, conducted at any point in a product’s lifecycle, both prior to 
and following marketing authorisation”. 
According to ICH E6 (R2)67, the Sponsor is “An individual, company, institution, or organisation 
which takes responsibility for the initiation, management, and/or financing of a clinical trial”. A 
superimposable definition is given in the standard ISO 14155:202068. Both definitions are confined 
to the concept of Sponsor in the context of human clinical trials. 
As explained in the previous chapters, in silico methodologies can refine, reduce, or entirely replace 
human experimentation. This chapter focuses mainly on studies where in silico methodologies are 
used to refine or reduce human experimentation; in other words, studies that still involve humans. 
However, the Sponsor’s basic responsibilities are applicable in all contexts, particularly regarding the 
requirements of implementing a thorough critical-to-quality risk assessment process and to assure the 
reliability of results. Whatever the aim of the trial and its place in the development path of medical 
treatment, the Sponsor has an obligation to follow the fundamental principles of Good Clinical 
Practice (GCP) and/or Good Laboratory Practice (GLP) and/or other GxP, beyond and above the need 
to follow the present Good Simulation Practice. 

In the context of this chapter, when referring to computer simulations or in silico trials, we imply the 
use of models developed and validated according to the requirements covered in Chapters 4 and 5. 
We also imply that fulfilling all regulatory requirements and guidelines applicable to preclinical and 
clinical trials related to medicinal products or medical devices is ensured. We will therefore focus on 
additional requirements to be followed when including computer simulations/in silico trials in the 
development process of new medical treatments.     

The Sponsor willing to include in silico trials in the frame of the pre-clinical and/or clinical 
development of a new medical treatment should: 

- extensively assess and clearly define the context of use of the in silico trial in the development 
path of its product; 

- allocate a project manager and adequate resources; 
 

67 https://www.ema.europa.eu/documents/scientific-guideline/ich-e-6-r2-guideline-good-clinical-practice-step-5_en.pdf  
68 https://www.iso.org/standard/71690.html  
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- identify the computer simulations provider (internal/external); 

- draft the trial’s protocol; 
- analyse regulatory constraints and where necessary seek advice from regulatory authorities; 

- ensure continuous oversight of the project; 
- critically evaluate the study's outcome and discuss the results with the regulatory authority.  
 

9.2. Relevant expertise 

The Sponsor may have internal technical resources/computational specialists or depend on computer 
simulations vendors/consultants. In any case, the Sponsor should have internal personnel 
knowledgeable about computer modelling and simulations, at least to the extent needed for 
adequately assessing technical, regulatory, and logistic constraints. It is recommended that Sponsors 
with no prior experience in using in silico trials put in place a specific implementation plan, including 
basic training of personnel (e.g., attendance to specific courses, learning of available guidelines and 
documents, “hands-on” training) or refer to a specialised consultant.   
In particular, the Sponsor of an in silico clinical trial, whether intended to refine, reduce, or replace 
human experimentation, should have adequately trained personnel capable of performing the 
necessary credibility assessment for the in silico methodologies, follow available international 
guidelines and ensure that a quality management system throughout all trial stages is in place.  
We do not believe any training certification scheme would be helpful in this case due to the broad 
range of skills and experience required to use in silico methodologies. However, higher education 
institutions should revise their curricula to include elements of in silico medicine in all degrees related 
to human health. They should also consider more specialised profiles that currently do not exist.  The 
academic experts in in silico medicine should collaborate toward defining such curricula. 

 
9.3. Quality management, quality assurance and quality control  

The Sponsor of an in silico trial should implement a critical-to-quality risk assessment process to 
ensure: 

- the protection of the rights, safety, and well-being of study participants (when these are involved), 
- the generation of reliable and meaningful results, and 

- the appropriate management of risk factors using a risk-proportionate approach. 
 

9.3.1. Risk identification, evaluation, control, communication, review, and reporting  
A basic set of factors relevant to ensuring trial quality should be identified for each study, focusing 
on critical factors. Examples of possible critical factors are:  
- Protocol development: the trial protocol should be scientifically sound and adequately sized, with 

well-defined and relevant endpoints and statistical methods. Study procedures and conditions for 
premature study interruption should be detailed. For hybrid studies, measures to protect study 
participants' rights, safety, and well-being should be defined, in addition to unambiguous 
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identification of stopping rules for adaptive studies. Studies should also follow the respective 
good practice documents for the modalities other than in silico (e.g. GCP). 

- Selection of the clinical Investigators, as discussed in chapter 9.6. 

- Selection of the modeller, as discussed in Chapter 10. 
- Trial monitoring/supervision, as discussed under Chapter 10. 

- Training of personnel: internal, CRO, and local study staff. 
- Data collection and analysis. 

- Data interpretation and reporting. 
Once identified, the risks should be evaluated regarding the likelihood of occurrence, the extent to 
which those errors would be detectable and their impact (risk evaluation). Factors identified as critical 
to quality should be carefully evaluated in advance, and appropriate risk-mitigation activities should 
be put in place (risk control); in hybrid studies, these should be proportional to the impact of such 
factors on human subject protection and on the reliability of trial results. Quality management 
activities and periodic revision and re-assessment of critical factors should be documented. Any 
change to trial conduct deriving from corrective measures to mitigate critical risks should be 
documented and reported. 
For pilot trials, an external, independent Data Safety Management Board is recommended to set up 
that periodically reviews data as they accumulate. Studies with adaptive features and/or interim 
decision points need specific attention during proactive planning, ongoing review of critical quality 
factors, and risk management.      
   

9.3.2. Standard Operating procedures 
The Sponsor should have in place a quality manual and written standard operating procedures (SOPs) 
to ensure that: 
- roles and responsibilities of the personnel (internal/external) are clearly defined and 

communicated; 
- the trial is carried out in compliance with the protocol and applicable regulations. Any deviation 

from the original plan is recorded, appropriately documented and justified, and its impact on the 
reliability of the results is properly assessed; 

- data generation, data collection, data handling, analysis and reporting are accurately managed to 
ensure data integrity and reproducibility; 

- the process of quality management is defined; 
- the process of vendor selection is defined.  

 
9.4. Contract Research Organisation (CRO)  

The ICH E6(R2) defines a CRO as “a person or an organisation (commercial, academic, or other) 
contracted by the sponsor to perform one or more of a sponsor's trial-related duties and functions”. 
As previously discussed for the definition of Sponsor, in this chapter, the focus will be on the role of 
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a CRO in the context of human clinical trials. Nonetheless, most of the topics discussed here are 
general and applicable also to CRO managing pre-clinical trials.   
 

9.4.1.  Relevant expertise 
The use of CM&S in clinical studies will require a change in the current status quo of how CROs 
operate in drug development projects. 
CROs offering services for managing projects that include the adoption of CM&S in any context (like 
patient-specific models, virtual populations, hybrid trials, in-silico augmented clinical trials, etc.) 
should have adequate internal staff (highly preferable) or consultants with a good understanding of 
CM&S, in addition to the expertise in the management of clinical trials. The role of the CRO may or 
may not include that of developing and running the models. Whenever the CRO also provides 
computer simulation services, relevant expertise and qualifications, as detailed in Chapter 10, must 
be ensured. 

When the CRO does not have an internal technical department with computational specialists, it 
might support the Sponsor in identifying the third-party vendor if required by the Sponsor. In all 
cases, the CRO should have a deep knowledge of applicable regulations, guidelines and best practices 
related to in silico trials and should remain constantly updated as knowledge in the scientific and 
regulatory fields progresses. 
Given the complexity of in silico clinical trials, it would be advisable that a specialised professional 
figure be dedicated to this type of study.  
  

9.4.2. Allocation of roles and responsibilities 
The Sponsor may transfer some or all its responsibilities to a CRO but the ultimate responsibility for 
the quality, and the integrity of the trial remains with the Sponsor. When delegating activities, 
including in silico activities, the Sponsor's role is to provide the so-called Investigator’s Brochure 
(see Chapter 10) to the mandated Investigator. 

The allocation of responsibilities must be in writing, usually in the form of a contract. The Sponsor 
is also responsible for overseeing the activities performed by the CRO.  

Delegated activities may be related to: 
- trial design,  

- assessment of project feasibility and centres identification, 
- model building and development, 

- regulatory activities, 
- set-up of data collection tools, 

- sites initiation and training, 
- supervision of the trial conduct (simulations or in human studies), 

- site monitoring, 
- safety monitoring, 
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- data handling and data privacy, 

- data analysis and reporting, 
- maintenance of trial documents.  

In addition, when the CRO provides computer simulation services, all responsibilities detailed in 
Chapter 10 must be fulfilled.  

  
9.5. Adoption of computer simulations in the definition of the global development plan  

9.5.1. Pre-clinical development plan 
Computer simulation services required to support preclinical studies should be adequately described 
in a plan, including a description of the in silico trial objectives, available knowledge and data, 
modelling and simulation methodology to be applied, and outcomes evaluation criteria. If the services 
would be part of application submission to regulatory bodies, Computer simulation activities, 
including reporting, should be performed according to the recommendations described in Chapters 4 
and 5. 
CM&S activities should be integral to the sponsor’s strategic preclinical development program for 
the medical product under consideration. 
 

9.5.2. Clinical development plan 
Computer simulation services required to support clinical development studies should be performed 
in line with the recommendations provided in ICH E9 Statistical Principle for Clinical Trials69 70. 
Specific regulatory guidance documents should be consulted and followed when including model-
informed drug development approaches71.  
Modelling activities aiming to analyse the data obtained from a clinical trial should be described in a 
specific plan, including a description of the objectives, modelling and simulation methodology to be 
applied, and outcomes evaluation criteria. The in silico trial plan should be finalised before the start 
of the trial. In silico trials should be integral to the sponsor’s strategic clinical development program 
for the medical product under consideration. 
 

9.6. Investigator selection   
In the context of this chapter, the Investigator is “a person responsible for the conduct of the clinical 
trial/clinical investigation at a trial site”, as defined in the ICH E6(R2) and ISO 14155:2020. Here 
again, we differentiate the clinical Investigator (i.e., a non-computational specialist) from the 
modeller, which is discussed in Chapter 10. Although the role and responsibility of the clinical 
Investigator and the modeller are conceivably different, in the context of hybrid or adaptive clinical 
trials, the interplay between the two “Investigators'' is crucial. There is so far limited experience with 

 
69 https://www.ema.europa.eu/documents/scientific-guideline/ich-e-9-statistical-principles-clinical-trials-step-5_en.pdf  
70 https://www.ema.europa.eu/documents/scientific-guideline/ich-e9-r1-addendum-estimands-sensitivity-analysis-clinical-trials-

guideline-statistical-principles_en.pdf  
71 Madabushi, R., Seo, P., Zhao, L. et al. Review: Role of Model-Informed Drug Development Approaches in the Lifecycle of Drug 

Development and Regulatory Decision-Making. Pharm Res 39, 1669–1680 (2022). https://doi.org/10.1007/s11095-022-03288-w 
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the inclusion of computer simulations in the context of clinical trials in human subjects. As experience 
is accumulated, such interplay will be formalised. 
       

9.6.1. General requirements  
The selection process of a clinical Investigator should consider the context of the use of the in silico 
trial (whether to reduce, refine, or partially replace clinical experiments), the specificities and the 
complexity of the trial design, and follow a preliminary careful risk evaluation process. In particular, 
the selection of a clinical Investigator must take into consideration the role and the actual involvement 
of the Investigator: 

- The clinical Investigator is involved in human clinical trials run to validate predictive models, 
- The clinical Investigator is involved in a clinical trial simulation (e.g., use of synthetic control 

arm, virtual populations, digital twins), to inform or to complement the clinical trial, 
- The clinical Investigator participates in a hybrid in silico/in human trials.  

Although a general understanding of modelling and simulation technologies is required in all cases, 
the level of knowledge in computer simulations the Investigator has should be proportional to the 
risk: the higher is the risk (which can be quantified with a risks analysis such as the one part of the 
ASME VV-40:2018 standard), the more qualified should be the Investigator. 

Similar considerations apply to Investigator selection in the context of preclinical development.  
 

9.6.2. Investigational centre selection   
Based on its role and involvement, the Investigator selection process - in addition to the verification 
of the requirements established in the ICH E6(R2) and in the ISO 14155:2020 for centre selection - 
may require the need to perform additional verifications to ensure that the centre has adequate 
facilities for the in silico aspects. It is also important to secure that the Institution and the competent 
Independent Ethics Committee/Institutional Review Board are well-informed and involved in the 
process, particularly in the case of complex trial designs.  

 
9.7. Study design, setup, and management 

The scope of this section is not to analyse and discuss the different possible designs of an in silico 
trial in the development of a medical product but to provide general guidance and overarching 
principles. 
An in silico trial design should align with the Clinical Development Plan established for that medical 
product and be preliminarily submitted for advice to regulatory authorities. The regulatory pathway 
chosen depends on the clinical development plan and the proposed use of the data generated from the 
in silico trial. 
The Sponsor should provide an updated Investigator’s Brochure detailing all available information 
related to the medical product, including, in the case, results of performed CM&S.  
A study-specific protocol with clearly defined endpoints, a rigorously described methodology, and a 
proper statistical section must be in place. The rationale and the model's aim (context of use) should 
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be well described, and the level of the model risk, based on a risk-informed credibility assessment of 
the computational model. It is recommended that the clinical Investigators are involved in designing 
the protocol and definitions of the endpoints to ensure that clinical endpoints and engineering outputs 
are well aligned. The clinical Investigator should also be consulted in preparing the patient's 
information leaflet and informed consent form, if applicable.  

Before the start of the study, ethical and regulatory approvals – as appropriate – are to be obtained. 
Written agreements among all involved parties (e.g., sponsor, Investigators, institutions, CRO) 
defining the responsibilities of each party shall be in place. 
The general guidelines set in the ICH E6(R2) and in the ISO 14155:2020 should be followed for the 
study setup, including maintenance of study documents and documentation, the conduct of the study 
initiation visits and the training of site personnel.  The extent of training on computational models for 
the study site personnel will be customised depending on the specific involvement of the 
Investigators; in hybrid or adaptive clinical trials, there should be an ongoing interaction between the 
modeller and the clinical investigator. 
The Sponsor should define in a targeted monitoring plan the extent and nature of monitoring 
appropriate for the study based on risk assessment (see section 9.9).   
 

9.8. Data handling and record keeping 
The Sponsor should utilise appropriately qualified (internal or external) individuals to handle and 
verify the data, conduct the computer simulations analyses, and prepare the trial reports. 
For electronic data handling and/or remote electronic trial data systems, the recommendations 
included in Chapter 5.5 of the ICH E6(R2) should be followed. 
The sponsor should retain all sponsor-specific essential documents in conformance with the 
applicable regulatory requirement(s) of the country(ies) where the product is approved and/or where 
the sponsor intends to apply for approval(s). 
 

9.9. Compliant GxP Computerised Systems 
GxP is an umbrella term that describes regulatory guidelines across the pharmaceutical and medical 
device industries. The term encompasses a variety of regulatory guidelines such as Good Laboratory 
Practice (GLPs), Good Clinical Practices (GLPs), Good Manufacturing Practices (GMPs), Good 
Distribution Practices (GDPs), and Good Storage Practices (GSP). 
GxP compliance is establishing and documenting that the specified GxP requirements of a 
computerised system can be consistently fulfilled. Validation should ensure accuracy, reliability, and 
consistent intended performance from design until decommissioning of the system or transition to a 
new system. 
Digital systems used for trial purposes should consider the factors critical to their quality in their 
design and be fit for purpose. To this end, validation of systems, data protection, information 
technology (IT) security and user management are essential elements to be addressed. 

Sponsors should maintain Standard Operating Procedures (SOPs) for using these systems. SOPs 
should cover system setup, installation, and use. They should further describe system validation and 
functionality testing, data collection and handling, system maintenance, system security measures, 
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change control, data backup, recovery, contingency planning, and decommissioning. The 
responsibilities of the Sponsor, Investigator, and other parties concerning the use of these 
computerised systems should be clear, and the users should be provided with training in the use of 
the systems. 
Sponsors should further ensure the integrity of the data, including any data that describes the data's 
context, content, and structure. This is particularly important when changing computerised systems, 
such as software upgrades or data migration. 

The Sponsor may transfer responsibilities of a computerised system to a Technology Service 
Provider. Still, the ultimate responsibility for the quality and integrity of the computerised system 
remains with the Sponsor. The allocation of responsibilities must be in writing, usually in the form 
of a contract. The Sponsor is also responsible for checking that the SOPs of the Technology Service 
Provider are meeting the Sponsor’s quality and integrity standards and overseeing its activities. 
 

9.10. Monitoring procedures 
The role of a monitor in the frame of an in silico trial is so far not established. We assume that while 
a monitor has no role in the verification of the technical aspects of the model, he/she may be involved 
in ensuring that: 

- adequate documentation is produced and maintained during the running of the in silico trial, 
- the data used for the models can be tracked to the source, 

- the data used for the models are accurate and complete, 
- proper informed consent has been obtained from data subjects, where applicable.    

Depending on the type of in silico trial, these activities should complement standard monitoring 
activities performed for clinical trials according to current guidelines and regulations to which 
reference is made. 
In all cases, the Sponsor (or delegate) must develop a risk-based monitoring plan based on the risk 
assessment and tailored to the type and complexity of the study (pre- vs post-market) and its 
regulatory purpose. In addition to on-site monitoring, centralised monitoring (i.e., a remote evaluation 
of accumulating data) should be implemented extensively to ensure data quality.    

The outcome of all monitoring activities must be documented in the form of reports, which must be 
timely provided to the Sponsor for review and follow-up. 

A special case is when the results of the double-blind clinical experimentation are also to be used to 
validate the predictive model.  In such cases, the clinical data collected during the study have a double 
use: they inform the safety/efficacy of the new intervention being tested and validate a predictive 
model.  These two activities have different requirements: the analysis to assess safety or efficacy 
usually takes place once the study is finished, whereas the validation of predictive models may require 
some of the data (those used as input for the model) to be disclosed to the modeller as soon as they 
are collected so that the prediction can be made before the validation data are collected (which 
minimise the risk of bias).  This creates a potential issue for the Sponsor, who should be asked to 
open the labels to the modeller while the trial is still running.  A possible solution is this: 
- Patients’ assignment to study treatments is labelled as groups A and B. The key is disclosed to 

the modeller only, who is independent of the study team and bound to secrecy;  
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or 

- the input data are identified and stored separated from the rest of the clinical data; 
- the modeller is given access to this subset of the clinical data, but no label information; 

- the modeller runs the simulations for each patient enrolled twice, once assuming the patient has 
been treated and one assuming the patient was given the placebo/comparator; 

- once the study is completed and the labels are opened, the right simulation is chosen for each 
patient and compared to the clinically observed values to complete the validation study.  

 
9.11. Audit   

One of the critical responsibilities of a Sponsor is to ensure oversight of any clinical trial-related 
duties and functions, including oversight of the external organisations to which some activities have 
been delegated (ICH Q10, 21 CFR 211, 21 CFR Part 820.50). The Sponsor should redact an audit 
plan tailored to the level of risk, focused on critical-to-quality aspects identified in the risk assessment 
process. Appointed auditors must be independent of the Sponsor and qualified by documented 
training and experience to conduct audits.    

In particular, when computer simulations are outsourced to external vendors, auditors should have 
the technical expertise to verify critical aspects such as version control for models and software, 
adherence to standards, and maintenance of adequate documentation. 
All findings will be reported to the Sponsor in an audit report to be shared with the audited party. A 
corrective and preventive action (CAPA) plan should be implemented and followed up for relevant 
findings.      

 
9.12. Non-compliance   

Non-compliance with the protocol, procedures, and regulations can be detected during monitoring or 
may be a finding from an audit. The Sponsor is responsible for assessing the relevance of the non-
compliance and implementing proper corrective actions or terminating the participation of a 
site/Investigator in the case of serious and /or repeated non-compliance, notifying the regulatory 
authorities when required by the regulation. 

 
9.13. Premature termination or suspension of a trial  

The handling of a premature end of a study involging in silico methodologies is quite similar to that 
used in conventional clinical studies. 

The possible reasons for premature termination or suspension of a hybrid/adaptive/in silico-
augmented clinical trial should be described in the risk management plan and in the study protocol. 
If appointed, the independent Data Safety Management Board should be involved in evaluating 
potentially critical factors. Suppose a decision is made to terminate or suspend a trial, the 
Investigators and institution. In that case, regulatory authorities and Ethics Committees should be 
promptly informed and provided the reason(s) for the termination/suspension. The reasons for the 
premature termination/suspension of an in silico trial not directly involving human subjects should 
also be documented. 



 

 82 

There are fewer reasons for in silico trials to terminate early than clinical trials. Nevertheless, this 
could happen when: 
- In an in silico-augmented trial, the experimental observations made on the physical subjects 

enrolled in the study are not consistent with the predictions made for the virtual subjects. 
- It becomes clear that the envisioned potential cannot be demonstrated based on an interim 

analysis. 
- The sponsor terminates support and funding based on respective clauses in the agreements. 

- The simulation software is not supported anymore by the developers/vendors, and issues or 
incompatibilities come up that do not allow completing the trial with the existing version. 
Considering such a scenario, risk should be minimised during model selection/development (see 
Chapter 4) but cannot be ruled out completely (e.g., bankruptcy). 

One of the study arms demonstrates a clear benefit in an interim analysis. Ethically, this does not 
require trial termination as it could be completed without negative effects after publicising the initial 
results. Nevertheless, the sponsor could decide to terminate for economic reasons if the intended 
benefit has been demonstrated already. 

Any premature trial termination requires detailed documentation regarding the reasons and 
circumstances and data acquired and analysed in a dedicated report. 

 
9.14. Trial/study reports 

Whether the trial is completed or prematurely terminated, the sponsor should ensure that the trial 
reports are prepared and, if applicable, provided to the regulatory agency(ies). The sponsor should 
also ensure that the clinical trial reports are adequately in line with the standards of the ICH E3 
Guideline for Structure and Content of Clinical Study Reports72 and model credibility assessment 
recommendations provided in Chapter 5. 
 
9.15. Essential Good Simulation Practice recommendations 

- The Sponsor of an in silico clinical trial, as well as the CRO that manages it, should have in staff 
the necessary technical expertise. 

- Computer modelling and simulation services required to support clinical development studies 
should be performed as per the recommendations provided in ICH E9 Statistical Principle for 
Clinical Trials and be in line with existing regulatory guidelines on the use of CM&S in 
drug/medical device development plan. 

- All computerised systems used in in silico clinical studies should be GxP-compliant. 
 
  

 
72 https://www.ema.europa.eu/documents/scientific-guideline/ich-e-3-structure-content-clinical-study-reports-step-5_en.pdf  



 

 83 

10. THE INVESTIGATOR: MODELLERS AND ANALYSTS 
Chapter editors: 

- Raphaelle Lesange (VPH institute) 

- Axel Loewe (Karlsruhe Institute of Technology) 

 

Contributors (random order): 

- Marco Viceconti (Alma Mater Studiorum – University of Bologna) 

- Enrique Morales Orcajo (Ambu Innovation GmbH) 

 

10.1. Roles & responsibilities 
In analogy to what is recommended by the ICH guideline on GCP for regular clinical trials, the roles, 
tasks, and responsibilities of the parties conducting a study involving in silico methodologies should 
be clearly stated and documented appropriately73,74.  

In a clinical study, the Investigator is the person who runs the study. The Investigator may help 
prepare and carry out the study's protocol (plan), monitor the study's safety, collect and analyse the 
data, and report the study's results.   
When in silico methodologies are involved, the term Investigator refers to the person, or in some 
cases the hosting institution, in charge of carrying out the modelling tasks and generating the in silico 
evidence. Experts who develop predictive models are usually referred to as modellers, whereas 
experts who merely use models developed by others are sometimes called analysts. Here we will refer 
to both roles indistinctly with the term Investigator. Given that the role of the clinical Investigator 
and that of in silico Investigator may involve different backgrounds, in clinical studies where in silico 
methodologies are involved, the two roles may be separated and assigned to different persons or 
institutions. 
The Investigator may be in charge of performing the simulations and analysis but also of activities 
described in the model development plan (c.f. Chapter 4) and the credibility-building activities (c.f. 
Chapter 5). The Investigator's role and responsibilities are defined in relation to the Sponsor and their 
mutual agreement: 
- A documented agreement with the Sponsor should clarify the roles, responsibilities, and 

frequency of reports at the beginning of the project. 
- The Investigator should be aware of and comply with applicable modelling and simulation 

standards and guidelines, such as the current GSPs.  
- The Investigator/institution should have approval of the competent IEC/IRB where required. The 

Investigator/institution and Sponsor share responsibility for the handling and protection of 
personal health data, together with the ethics committee. 

- The Investigator must follow the model development plan as agreed with the Sponsors. In case 
of deviation from plan, this should be discussed early on and agreed with the Sponsor in written 
form. If applicable, new approval and opinion from the ethics committee should be obtained (e.g., 
when the deviation regards personal health data acquisition, storage, or processing steps). 

 
73 https://database.ich.org/sites/default/files/E6_R2_Addendum.pdf  
74 https://database.ich.org/sites/default/files/ICH_E6-R3_GCP-Principles_Draft_2021_0419.pdf  
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- The Investigator is responsible for ensuring that the modelling and simulation activities are 
carried out with adequate pre-defined hardware and software infrastructures for which the 
protocol and credibility assessment measures have been designed and approved (c.f. Chapter 4 
and Chapter 5). 

- Since part of the modelling activities may be delegated to third parties, it is the responsibility of 
the Investigator or of the Sponsor to record any tasks that have been delegated and the list of the 
qualified persons they were delegated to. In addition, the Investigator or Sponsor is responsible 
for adequately informing each third party assisting with the modelling and simulation process 
about the investigational product (see Investigator’s brochure), the modelled system and agreed 
protocols. 

 

10.2. Investigator's Brochure 
Similar to regular clinical trials, the Investigator must be informed by the Sponsor about the medical 
product under investigation and subjected to the in silico trial. This can take place through handing 
of an investigator’s brochure by the Sponsor to the Investigator, like recommended in the ICH Good 
Clinical Practice75 and the European Commission Directives 2005/28/EC76 and 2001/20/EC77. 
The Investigator's brochure summarises the medical product characteristics and compiles existing 
clinical and non-clinical data (including pre-existing in silico data) about the medical products 
relevant to the study to facilitate understanding the rationale of the in silico trial (Döerr et al., 2017). 

The information in the investigator’s brochure, shall be presented in a concise, simple, objective, 
balanced and non-promotional form that enables potential investigator to understand it and make an 
unbiased risk-benefit assessment of the appropriateness of the proposed in silico trial. 
 

10.3. Investigator's qualifications 
The Investigator needs to be qualified to fulfil their role. The required competencies range from 
practical skills regarding the use of the simulation software (“know your tools”) to the capacity to 
judge whether the model at hand is suitable for the specific Context of Use (CoU), as detailed below. 
A lack of general understanding of the physiological processes and the lack of interdisciplinarity in 
the team are important pitfalls in applied modelling. In particular, the Investigator needs the following 
qualifications: 
- Capacity to judge whether the in silico model technique and its boundaries (Intended Use) are 

compatible with the clinical purpose and objectives (CoU). This assessment requires that the 
Investigator has access to information on the biomedical context of the study and clinical 
information about the medical product being modelled. In this context, the Investigator’s brochure 
is of particular importance (see section 10.2).   

- Capacity to evaluate the adequacy of the modelling decisions to be taken during the design and 
the execution of the in silico trial and their implications for the intended CoU. This assessment 
includes biomedical and numerical aspects (for example, time and space resolution, convergence, 
and stability). When the expertise of the modeller on the pathophysiology of the biomedical 

 
75 https://database.ich.org/sites/default/files/E6_R2_Addendum.pdf  
76 http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:32005L0028:EN:NOT  
77 https://health.ec.europa.eu/medicinal-products/clinical-trials/clinical-trials-directive-200120ec_en  
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process being simulated is not documented, an expert on the specific pathophysiology in question 
should also be consulted. 

- Proficiency in using the M&S software for the in silico trial. We refer to Chapter 3 (“Model 
development”) for cases where the software needs to be adapted. 

- Capacity to post-process, analyse, and condense the results of the in silico trial, including 
statistical analysis. 

- Capacity to identify relevant ethical aspects related to the in silico trial. These can be evaluated 
by the Investigator or discussed with the institutional ethics committee if required. 

Formal training, degrees, and certificates will often be evidence for many of these competencies. 
However, there is no specific set of degrees of certificates that would be comprehensive enough to 
cover all aspects and, at the same time, general enough to be applied to all fields of in silico medicine 
and the wide range of possible Contexts of Use. Considering the wide range of required qualifications, 
one person is unlikely to fulfil all of them on an expert level. The Investigator needs to ensure that all 
required competencies are available in the team of experts involved in the study.  
The qualifications of the people involved in a simulation study may need to be reported. For instance, 
in the NASA-hdbk-7009a78 about CM&S in mission-critical applications, it is requested to “provide 
an understanding of the education and experience of the people developing and using the M&S” in a 
dedicated table.  
In conclusion, the Investigator needs to convince the relevant stakeholders (Sponsor, regulatory 
agencies, ethics committee) that the relevant qualifications are available. 
 

10.4. Adequate resources  
To execute the in silico trial, or other modelling tasks, agreed on with the Sponsor according to the 
state of the art, the Investigator needs access to human resources, support, computing resources, and 
feedback. 
In most cases, human resources will be the most expensive part of the in silico activities budget. The 
Investigator and his/her team need to be funded adequately to be able to commit the required time to 
the execution of the in silico experiments and their analysis. The team needs to be formed with 
persons covering all the required qualifications as detailed in the previous section. 
For situations in which the expertise within the team is not sufficient or solutions can be obtained 
more efficiently with help from the outside, the Investigator should have access to external support. 
Demand for such support can arise in various fields as evident from the wide range of required 
qualifications (see section above): technical support from the developers/vendors of the simulation 
software, support for collecting data, statistical support, support regarding ethical questions or legal 
and regulatory issues. Resources need to be allocated to pay for such support in case this is not 
covered by existing agreements.  The participation of external experts must be properly documented 
and tracked throughout the study. 
To run the in silico experiments the Investigator depends on adequate computing resources. These 
can range from a personal computer to high-performance computing resources in a dedicated 
computing centre or in the cloud, depending on the characteristics of the model and the number of 

 
78 https://standards.nasa.gov/standard/NASA/NASA-HDBK-7009  
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simulations to be run. The specific requirements need to be discussed and agreed upon with the 
Sponsor in good time. Remote access needs to be secured according to the state of the art.  The choice 
of the computational platform must also be made keeping in mind the legal and ethical requirements 
that the treatment of sensitive data imposes. 
To ensure that the results of the in silico activities will be as valuable as possible, the Investigator 
should have access to feedback from experts of the biomedical context and/or “users” of the results 
(e.g., physicians, product managers, regulatory agencies, etc.) during the modelling process unless 
explicitly designed differently in the study protocol. 
 

10.5. Records and reports 
The sequence of steps and decisions made during the modelling process are context-specific and may 
be subjective, impacting the conclusion and hindering the results' reproducibility (Erdemir et al., 
2019). Therefore, concerning a quality approach and/or regulatory evaluation, the M&S tasks and 
decisions must be documented and reported. Since the Investigator carries out these tasks, here we 
focus on his/her main responsibilities concerning recording and reporting. 

The Investigator must identify, justify, and document every expert-based choice potentially prone to 
modeller bias (e.g., parameter selection, model structure). All source documents, codes, results, and 
data should be adequately recorded, maintained, and retained by the Investigator/institution, with the 
support of the Sponsor, for the duration initially agreed with the Sponsor. It is the responsibility of 
the Sponsor to agree in advance on an adequate period of time. The tasks that have been delegated 
should also be subject to recording. In addition, the Investigator must make all records available upon 
request of the Sponsor or relevant regulatory authorities. As such, the Investigator/institution should 
ensure the adequate accessibility and legibility of documents and data and support audits. 

Regarding reporting activities, the Investigator should provide frequent written progress reports to 
the Sponsor as defined in the initial agreement. Those reports should document the technical progress 
and results, as well as potential model deficiencies, limitations and ideas for improvements 
discovered during the process. Any deviation from the agreed protocol should also be justified and 
reported by the Investigator when they occur.  

Finally, the Investigator must provide the Sponsor and regulatory authorities with a final report 
summarising the outcome of the in silico study after termination. This report should include the actual 
workflow employed by the Investigator, the generated in silico evidence and their analysis concerning 
the CoU. The Investigator is responsible for the scientific integrity of the reported research and data. 
The FDA has issued a guidance document providing modellers with a general outline for reporting 
computational modelling and simulations in medical device submissions79. Although detailed content 
may not entirely apply to all types of in silico models (e.g., for drug approval submission), the general 
outline is rather generic. It may be considered for guiding the final report of in silico trials. In addition, 
the EMA provides guidelines to physiologically based pharmacokinetic modellers that describe the 
expected content of M&S reports for regulatory submissions80. Similar guidelines were also released 

 
79 FDA, Reporting of Computational Modeling Studies in Medical Device Submissions - Guidance for Industry and Food and Drug 

Administration Staff. (2016). https://www.fda.gov/regulatory-information/search-fda-guidance-documents/reporting-
computational-modeling-studies-medical-device-submissions   

80 https://www.ema.europa.eu/en/reporting-physiologically-based-pharmacokinetic-pbpk-modelling-simulation  
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for reporting population pharmacokinetic analyses81. Overall, the content is specific to drug 
applications, but many recommendations also apply to other modelling applications. 
 

10.6. Safety and security  
The major risk for humans is concerning personal data, which need to be handled according to data 
privacy standards and rules. Given the digital nature of in silico trials, there is no direct involvement 
of human participants from which health-related safety issue could arise during the investigator's 
modelling activities. For what concerns simulation input measurements and validation activities, any 
clinical trial that may be necessary to generate data for the model is not the modeller's responsibility 
and should comply with other relevant guidelines, such as good clinical practices (GCPs). However, 
the Investigator must consider the following safety and security aspects of in silico activities. 

Data safety, i.e., protecting data against loss by ensuring safe storage and back-up of the data, must 
be ensured by the Investigator/institution. This means input (patient) data but also codes, analyses, 
results, records, and reports. Therefore, appropriate hardware or cloud facilities with backup systems 
and version control should be available and used by the Investigator (c.f. 9.4). The Investigator should 
follow the data storage and version tracking strategy as defined in the model development plan (c.f. 
Chapter 4) with the Sponsor. 

Data security is also the responsibility of the Investigator/institution and/or the Sponsor, who should 
protect personal health data and patient privacy by ensuring adequate use and access restriction to the 
data. As such, the Investigator based in the European Union must comply with the current General 
Data Protection Regulation (GDPR)82 and related directives; most other countries now have similar 
legislations, although the details may vary considerably. It should be noted that if the country where 
the data were collected is subject to legislation different from that in force in the country where the 
data are being treated, the treatment of the data must follow the rules of the country where the data 
were collected. 
Specific attention must be paid to the level of data anonymisation and the possibility of relating some 
of the data-derived model characteristics (e.g., organ geometry) to the patient's identity. The ethics 
committee will commonly evaluate the data security strategy and specific measures, which may 
require a full Data Protection Impact Assessment (DPIA). The Investigator should use patient data 
according to what was defined in the protocol and approved by the ethics committee. 

Finally, any safety issues related to the use of the model within its intended CoU or that emerge as a 
result of the simulation and/or identified by the Investigator (c.f. Chapter 4) should be detailed in the 
report to the Sponsor and to the regulatory authorities.  
 

10.7. Essential Good Simulation Practice recommendations 
- Role and responsibilities of the investigator are defined in relation to the sponsor and their mutual 

agreement, which should be documented. 
- A record should be kept of eventual third parties contracted to assist in the CM&S activities and 

they should be adequately informed about the investigational product by the investigator. 

 
81 https://www.ema.europa.eu/en/reporting-results-population-pharmacokinetic-analyses  
82 https://eur-lex.europa.eu/eli/reg/2016/679/oj  
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- The investigator needs to ensure and convince stakeholders that all relevant qualifications are 
available in the team of experts involved in the study. 

- The investigator needs access to human resources, support, computing resources, and feedback 
necessary to accomplish the task as agreed with the sponsor. 

- All source documents, codes, results, and data should be adequately version controlled, recorded, 
maintained, and retained by the investigator/institution, with the sponsor's support, for the 
duration initially agreed with the sponsor. 

- The investigator is responsible for providing regular and final written reports on the conduct of 
the study and its conclusions by following appropriate reporting guidance. 

- The investigator and the sponsor should implement proper data safety and security measures, 
complying with relevant regulations (GDPR, etc.). 
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ANNEXES 
 

ANNEX1: A review of the existing regulatory guidance on the use of computational models 
This position paper on Good Simulation Practice does not emerge from a vacuum.  In the last 20 
years regulatory agencies issued guidance documents or technical standards for specific uses of In 
Silico methodologies. Here, we provide a short systematic review of this existing body of knowledge. 
The goal is not to provide details of these documents; for that it easier to consult directly to the 
original document; but only to provide for each a brief summary, which allows practitioners to choose 
which of these documents might be relevant for one’s purposes. 
The types of models and related documentation that are covered in this short review are related to 
drugs (quantitative structure-activity relationship (QSAR) models, population pharmacokinetic (Pop-
PK) models, exposure-response models including the Comprehensive In Vitro Proarrhythmia Assay 
(CiPA) project, physiologically based pharmacokinetic (PBPK) models, and disease-drug-trial 
models) and to medical devices (alternative to animal testing for artificial pancreases, risk of 
mechanical failure, magnetic resonance imaging (MRI) safety, guidance on reporting of 
computational modelling studies, credibility assessment, acknowledgement in EU documentation for 
market access, Japanese guidelines for in silico methodologies). 
It should be noted that these documents were written by different organisations, at different times, 
and with different purposes; thus, the language used is not consistent.  However, we decided to 
preserve in our summaries the original texts to respect the integrity of the document. 

 
Drugs - Quantitative structure-activity relationship (QSAR) models 

Quantitative structure-activity relationship models (QSAR models) are classification or regression 
models.  In drug discovery they are used to identify molecular structures with low non-specific 
activity and good inhibitory effects of specific targets; they are also used to estimate the octanol-
water partition coefficient (logP), important information to evaluate how a substance behaves with 
respect to factors like bioavailability (druglikeness).   
The only piece of regulatory guidance available for this type of model is the following: 

ENV/JM/MONO(2004)24. Report from the Expert Group on (Quantitative) Structure-Activity 
Relationships on the Principles for the Validation of (Q)SARs. Paris, France: Organization for 
Economic Co-operation and Development (OECD) Expert Group on QSARs. 
https://read.oecd.org/10.1787/9789264085442-en?format=pdf  

Quantitative structure–activity relationship (QSAR) models are regression or classification models 
used in the chemical and biological sciences and engineering. There are two types of QSAR models, 
regression or classification QSAR models. Like other regression models, QSAR regression models 
relate a set of "predictor" variables (X) to the response (potency) variable (Y), while classification 
QSAR models relate the predictor variables to a categorical value of the response variable. In QSAR 
modelling, the predictors consist of physicochemical properties or theoretical molecular descriptors 
of chemicals; the QSAR response-variable could be a biological activity/potency of the chemicals. 
QSAR models are first developed based on a dataset of chemicals to describe the relationship between 
chemical structures and biological activity. Then, QSAR models can be used to predict the activities 
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of new chemicals.  QSAR models can be as simple as a statistical regression, involve molecular 
dynamics calculations (e.g., 3D-QSAR based on binding affinity), or more complex and advanced 
models such as machine learning models.  QSAR models rarely include a mechanistic model of the 
physiology beyond the molecular scale: they capture either the mechanistic chemistry of the drug 
action at the molecular scale or build phenomenological relations with clinical endpoints.  

The OECD Principles for Validation of (Q)SAR for regulatory consideration are:  
- a defined endpoint 

- an unambiguous algorithm 
- a defined domain of applicability 

- appropriate measures of goodness-of–fit, robustness and predictivity 
- a mechanistic interpretation, if possible 

 
Drugs - Pop-PK 

Pharmacokinetics (PK) investigates how a drug is absorbed, distributed, metabolized, and eliminated 
from the body. Population pharmacokinetics models (popPK) are informed by concentration-time 
data from multiple individuals frequently pooled across multiple studies, and are used to for 
allometric scaling, exposure-response, bioequivalence, and many uses. 

The pieces of regulatory guidance available for this type of models are: 
- FDA-2019-D-2398 (CDER, CBER). Population Pharmacokinetics Guidance for Industry 

- EMA/CHMP/EWP/185990/06. Committee for Medicinal Products for Human Use (CHMP). 
Guideline on reporting the results of population pharmacokinetic analysis. 

 
FDA-2019-D-2398 (CDER, CBER). Population Pharmacokinetics Guidance for Industry 

https://www.fda.gov/media/128793/download 
This FDA guidance focus on how to conduct a Pop-PK analysis but contains limited information 
regarding models’ validation.  The section on model validation states: “Model validation depends on 
the objective of the analysis and should follow a fit-for-purpose approach”. Most of the 
recommendation refer to the type of plots that could be used to present the validation results, such as 
goodness-of-fit (GOF) plots, dependent variable versus the individual predictions plots, etc. 
 

EMA/CHMP/EWP/185990/06. Committee for Medicinal Products for Human Use (CHMP). 
Guideline on reporting the results of population pharmacokinetic analysis. 

https://www.ema.europa.eu/en/reporting-results-population-pharmacokinetic-analyses#current-
effective-version-section  

Population pharmacokinetics (Pop-PK) is the study of variability in drug concentrations between 
individuals (healthy volunteers or patients). It comprises the assessment of variability within the 
population, associated with patient characteristics such as age, renal function, or disease state. The 
non-linear mixed effects modelling approach has become increasingly used for Pop-PK. The EMA 
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“Guideline on reporting the results of population pharmacokinetic analyses” assume such approach 
is used.  In contrast to the FDA guidance on Pop-PK analyses, this guideline does not provide 
guidance on how to conduct a Pop-PK analysis, but rather provides guidance on points to consider 
when develop the analysis plan and the final analysis report. 
The analysis plan should at least include: 

- the objective(s) of the analysis 
- a brief description of the study (or studies) from which the data originates 

- the nature of the data to be analysed (how many subjects, rich or sparsely sampled) 
- the procedures for handling missing data and outlying data 

- the general modelling aspects (e.g., software, estimation methods, diagnostics) 
- the overall modelling procedure/strategy 

- the structural models to be tested (if this has been decided) 
- the variability models to be tested 

- the covariates and covariate models to be tested together with a rationale for testing these 
covariates based on, for example, biological, pharmacological and/or clinical plausibility. 

- the algorithms/methods to be used for covariate model building 
- the criteria to be used for the selection of models during model building and the inclusion of 

covariates (e.g., objective function value, level of statistical significance, the goodness of fit 
plots, standard error, inter-individual variability, clinical relevance) 

- The model evaluation/qualification procedures to be used. 
The final report should include the following sections: 

- Summary 
- Introduction 

- Objectives 
- Data 
- Methods 

- Results 
- Discussion 

 
Drugs – dose-response models 

Whereas pharmacokinetics models predict how of the drug reaches the target, pharmacodynamics 
models predict the effect that the drug will produce on the target biological system.  An important 
category of pharmacodynamics models are dose-response models (also known as exposure-response 
models).   

The concept of exposure and response are not always unequivocally defined. The broad term 
exposure is used to refer to dose (amount of a drug enters into the body) as well as to various measures 
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of acute or integrated drug concentrations in plasma and other biological fluids. Similarly, response 
refers to a direct measure of the pharmacologic effect of the drug. Response measures include a broad 
range of endpoints or biomarkers.  

EMA has only guidelines for specific products (e.g., EMA/CHMP/594085/2015, which targets 
microbials), whereas FDA has a general guidance. 

 
FDA (CDER, CBER) 2003. Guidance for Industry: Exposure-Response Relationships — Study 
Design, Data Analysis, and Regulatory Applications. 
https://www.fda.gov/media/71277/download  

Points to Consider in Study Design of Exposure-Response Analysis: 
- Crossover, fixed dose, dose response 

- For immediate, acute, reversible responses 
- Provide both population mean and individual exposure-response information 

- Safety information obscured by time effects, tolerance, etc. 
- Treatment by period interactions and carryover effects are possible; dropouts are difficult to 

deal with 
- Changes in baseline-comparability between periods can be a problem 

- Parallel, fixed dose, dose response 
- For long-term, chronic responses, or responses that are not quickly reversible 

- Provides only population mean, no individual dose response 
- Should have a relatively large number of subjects (one dose per patient) 

- Gives good information on safety 
- Titration 

- Provide population mean and individual exposure-response curves, if appropriately analysed 
- Confounds time and dose effects, a particular problem for safety assessment 
- Concentration-controlled, fixed dose, parallel, or crossover 

- Directly provides group concentration-response curves (and individual curves, if crossover) 
and handles inter-subject variability in pharmacokinetics at the study design level rather than 
data analysis level 

- Requires real-time assay availability 

In the process of PK-PD modelling, it is important to describe the following prospectively: 
- Statement of the Problem 

- Statement of Assumptions 
- Selection of the Model 

- Validation of the Model 
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- There are also recommendations on the structure of the reporting: 

- The response variable and all covariate information 
- An explanation of how they were obtained 

- A description of the sampling design used to collect the PK and PD measures 
- A description of the covariates, including their distributions and, where appropriate, the 

accuracy and precision with which the responses were measured 
- Data quality control and editing procedures 

- A detailed description of the criteria and procedures for model building and reduction, 
including exploratory data analysis. 

 
Drugs - Extrapolation models 

EMA/189724/2018. Reflection paper on the use of extrapolation in the development of medicines for 
paediatrics 

https://www.ema.europa.eu/en/extrapolation-efficacy-safety-paediatric-medicine-
development#current-version-section  

Extrapolation is defined as ‘extending information and conclusions available from studies in one or 
more subgroups of the patient population (source population(s)), or in related conditions or with 
related medicinal products, in order to make inferences for another subgroup of the population (target 
population), or condition or product, thus reducing the amount of, or general need for, additional 
evidence generation (types of studies, design modifications, number of patients required) needed to 
reach conclusions.’ While the focus of discussion here is on extrapolation for the development of 
medicines in children, the underlying principles may be extended to other areas. 

Extrapolation Concept 

Existing information about the disease, the drug pharmacology and the clinical response to treatment 
should be collated across studies and target populations. Factors that might impact the effects of 
treatment from different studies and target populations should be identified.  

The primary focus will usually be to establish a line of reasoning about the relationship between 
exposure and clinical responses. Where data are available to establish that a relationship (e.g., 
exposure-response) in the target population is similar to the study population the knowledge gained 
from the study population can be incorporated into the extrapolation concept and will not need to be 
addressed in the extrapolation plan.  
For other relationships or factors, reliable and informative data might not be available. These gaps in 
knowledge give rise to assumptions in the extrapolation concept that need to be investigated in the 
extrapolation plan before the extrapolated effects of treatment in the target population can be 
considered as a sound basis for regulatory decision-making. 
Where possible, quantitative methods should be used for the collation of available data and the 
investigation of potential modifiers of the treatment effect. A structured extrapolation plan should be 
provided. 
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Extrapolation Plan 

The gaps in knowledge and the assumptions identified in the extrapolation concept determine the 
objectives(s) and methodological approaches for the tests and trials that need to be conducted to draw 
inferences that are relevant for the target population. These tests and trials should be conducted to 
generate evidence that strengthens and ultimately, based on success criteria, confirms the 
extrapolation concept. Specifically, the extrapolation plan will address whether regulatory decisions 
can rely on the initial, or revised, expectations on the effects of treatment in the target population, or 
if more data need to be generated. 
Extrapolation plans will differ according to the extent of assumptions in the extrapolation concept. 
Data in the study population might establish that there are so few important modifiers of the treatment 
effect that clinical outcome can be predicted through similarity in drug exposure or in the magnitude 
of PD response. Alternatively, data from the source population might be limited such that the 
influence of one or more factors needs to be investigated through generation of some additional 
clinical data from the target population. The extreme case would be where gaps in knowledge might 
be such that extrapolation is not a viable approach. 

Mitigation of uncertainty 
Whilst conclusions from an extrapolation approach can give a sound basis for regulatory decision 
making, the data generated may not be sufficient to address all uncertainties related to a specific 
research question for the target population. For example, an acceptable degree of patient benefit on 
short-term efficacy outcomes, sufficient to support authorisation, might be established based on an 
extrapolation approach, but quantification of how this effect translates into longer-term outcomes 
might not be available. When there is a well-reasoned scientific uncertainty to be addressed to 
enhance the understanding of the effect of treatment with implications for better labelling and better 
use in clinical practice, the extrapolation plan can continue post-authorisation to reduce the identified 
uncertainty. 
 

Drugs - PBPK 
As mentioned above, whereas pharmacokinetics models predict how of the drug reaches the target, 
pharmacodynamics models predict the effect that the drug will produce on the target biological 
system. While PK models were historically developed without any mechanistic assumptions, by 
simply fitting experimental data with statistical models, Physiologically Based Pharmaco-Kinetics 
(PBPK) models predict the absorption, distribution, metabolism and excretion of a drug by relying 
on the mechanistic knowledge that anatomy, physiology, physics and chemistry can provide.  In most 
cased PBPK models are so-called grey-box models, in the sense they are built combining mechanistic 
and empirical (e.g., data-driven) knowledge. 
  

EMA/CHMP/458101/2016. Guideline on the reporting of physiologically based pharmacokinetic 
(PBPK) modelling and simulation. 

https://www.ema.europa.eu/en/reporting-physiologically-based-pharmacokinetic-pbpk-modelling-
simulation#current-effective-version-section  

The guideline recommends the essential information that needs to be reported when reporting PBPK 
modelling and simulation studies: 
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- Objective and regulatory purpose 

- Background information 
- Qualification 

- Model parameters 
- Assumptions 

- System-dependent parameters 
- Drug parameters and the drug model 

- Model development 
- Simulation of the intended scenario 

- Platform and drug model evaluation 
- Sensitivity analyses 

- Evaluation of the predictive performance of the drug model 
- Results 

- Discussion of the regulatory application 
In particular, with respect to model evaluation, the EMA wrote: “A comprehensive summary of the 
system and drug model evaluation should be provided. A thorough evaluation of the drug model is 
important if the model is to be used to simulate novel situations, e.g., drug interaction or PK in a 
different population. An evaluation of the model should be presented in appendix with sufficient 
detail in the report to support confidence for regulators in the application of the model in their 
decision-making.  
The appendix should provide some additional recommendations: 

- The validation should include the investigational drug PBPK model (treatment model). 
- Validation studies should be done against human experiments with multiple doses. 

- Simulation should be performed on populations of interest of at least 100 subjects. 
The guidance suggests the types of plots to be used to compare predictions to experiments. 
“The acceptance criteria (adequacy of prediction) for the closeness of the comparison of simulated 
and observed data depends on the regulatory impact and needs to be considered separately for each 
application.” 

 
FDA/CDER/2018. Physiologically Based Pharmacokinetic Analyses — Format and Content 
Guidance for Industry. 
https://www.fda.gov/media/101469/download  

The FDA guidance covers: 
- Overview of Modeling Strategy 
- Modeling Parameters 
- Simulation Design 
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- Electronic Files and Other Documentation 
- Software 
- Model Verification and Modification 
- Model Application 
The introduction section should provide: 

1. a high-level synopsis of the drug’s physicochemical, PK, and PD properties;  
2. the exposure-response relationships for the efficacy and safety of the drug to the extent that 

they are known;  
3. a brief PBPK-related regulatory history (i.e., prior interactions with the FDA and other 

regulatory agencies) to provide context for the PBPK analyses;  
4. cross-referencing to PBPK study reports previously submitted to the FDA for different 

intended uses at different stages of the development of the same drug substance or the same 
drug product. 

The Materials and Methods section should include “sufficient information to allow FDA reviewers 
to duplicate and evaluate the submitted modelling and simulation results and to conduct 
supplemental analyses when necessary.”   
Electronic files related to modelling software and simulations should be submitted along with the 
PBPK study report. 
 

FDA/CDER draft guidance October 2020. The Use of Physiologically Based Pharmacokinetic 
Analyses —Biopharmaceutics Applications for Oral Drug Product Development, Manufacturing 
Changes, and Controls - Guidance for Industry 
https://www.fda.gov/media/142500/download  

This guideline covers the concept of quality by design (QbD) principles and propose that the 
application of PBPK modelling could be expanded to pharmaceutical drug product development, 
manufacturing changes, and controls. It is applicable to oral formulations, only.  

In addition to the general considerations (which follow a similar structure as in the previously 
described guideline), specific applications of PBPK modelling to support product quality are 
described: 

1. Development of Clinically Relevant Dissolution Specifications (Method and Acceptance 
Criteria): 

a. Aid in Biopredictive Dissolution Method development 

b. Support Clinically Relevant Dissolution Acceptance Criteria 
2. Establishment of Clinically Relevant Drug Product Quality Specifications (Other Than 

Dissolution) 
3. Quality Risk Assessment for Pre- and Post-approval Changes and Risk-Based Biowaivers 
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Drug - Chemicals - PBK 

OECD Guidance document on the characterization validation and reporting Physiologically Based 
Kinetic (PBK) models for regulatory purposes. Adopted April 202183. 

http://www.oecd.org/chemicalsafety/risk-assessment/guidance-document-on-the-characterisation-
validation-and-reporting-of-physiologically-based-kinetic-models-for-regulatory-purposes.pdf  

This OECD guidance supports the use of PBK models for chemical risk assessment as an alternative 
to animal testing. PBK models are the same of PBPK models; the change in terminology is due to the 
fact that OECD targets not only drugs development, but also the safety assessment of chemical 
products, so the terminology is more generic. 

It describes the key steps for characterizing and validating such a model to improve model credibility 
and communication between modelers and regulators, but it does not provide good practices for 
model development. Interestingly, this guidance accounts for the fact that PBK models are most often 
calibrated with in vitro or in silico data, as in vivo kinetic data may not be available. However, this 
guidance explicitly states that goodness-of-fit and predictivity for PBK models requires in vivo kinetic 
data without stating their prospective or retrospective character.  It also discusses the validation as a 
term that may be understood differently by model developers and regulators. 
First, a regular PBK modelling workflow is described.  Notably, it includes a step called model 
performance, which covers model validation, sensitivity, variability and uncertainty analyses, and 
predictive capacity. 

The regulatory assessment part explains what is considered in the validation of a PBK model, taking 
into account the CoU. It provides two tools: (1) a model reporting template for model developers and 
(2) an evaluation checklist of model applicability for regulators.  
The recommendations from the template for reporting are the following:  

- Name of model 
- Model developer and contact details 
- Summary of model characterization, development, validation, and regulatory applicability 

- Model characterization (following the steps of the aforementioned modelling workflow)  
- Identification of uncertainties 

- Model implementation details 
- Peer engagement (input/review) 

- Parameter tables 
- References and background information 

The checklist for regulators is split into a context/implementation section and an assessment of 
validity section. The later covers the biological basis of the model, the theoretical basis of model 
equations, reliability of input parameters, uncertainty & sensitivity analysis and goodness-of-fit & 
predictivity. 

 
83 https://www.oecd.org/chemicalsafety/risk-assessment/guidance-document-on-the-characterisation-validation-and-reporting-of-

physiologically-based-kinetic-models-for-regulatory-purposes.pdf  
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CiPA: Comprehensive In Vitro Proarrhythmia Assay 
While the CiPA project has not produced guidelines yet, it is worth mentioning it here. The project, 
a collaboration between various regulatory agencies including FDA and EMA, aims to define a new 
approach to evaluate the risk that a new drug may cause torsades de pointes (TdP), an abnormal heart 
rhythm that can lead to sudden cardiac death, based on a suite of in vitro assays coupled to in silico 
models of cardiac electrophysiologic activity.  The project will provide data to ICH to update the S7B 
and E14 guidances. The most recent is this below, where some guidelines for in silico models is 
provided. 

 
ICH E14/S7B Implementation Working Group: Clinical and Nonclinical Evaluation of QT/QTc 
Interval Prolongation and Proarrhythmic Potential Questions and Answers. Draft version, Endorsed 
27 August 2020 

https://www.ema.europa.eu/en/documents/scientific-guideline/ich-guideline-e14/s7b-clinical-
nonclinical-evaluation-qt/qtc-interval-prolongation-proarrhythmic-potential-questions-answers-
step-2b_en.pdf  
“The following general principles should be applied to all proarrhythmia risk prediction models 
intended to be used as part of an integrated risk assessment for regulatory purposes. While the main 
focus of these principles is to evaluate a model’s predictivity of TdP risk, they are general enough to 
guide the development of models predicting different types of proarrhythmia. 

1. A defined endpoint consistent with the context of use of the model. 

2. A defined scope and limitations of the model. This includes the experimental protocols to 
generate model input (experimental data capturing pharmacological effect of drug), and the 
compounds tested should have the same arrhythmic mechanisms covered by the model. 

3. A prespecified analysis plan and criteria to assess model predictivity. The analysis plan should 
include methods to separate the training and validation steps. In the training step, a series of 
reference compounds is used to adjust the model. In the validation step, another series of 
reference compounds is used to evaluate the performance of the pre-specified model. The 
reference compounds used for the training and validation steps should not overlap. 

4. A fully disclosed algorithm to translate experimental measurements (model input) to 
proarrhythmia risk (model output), allowing independent reproduction of the model 
development process using the associated training and validation datasets to re-evaluate the 
model performance. 

5. The uncertainty in the model inputs should be captured and propagated to the model 
predictions. The experimental variability associated with model input should be quantified 
using appropriate statistical methods and then translated into probabilities of the predicted 
risk. 

6. A mechanistic interpretation of the model, which describes the relationship between the model 
inputs and mechanism for the arrhythmia.” 
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CM&S for Medical devices – alternative to animal testing for artificial pancreas 

Kovatchev BP, Breton MD, Dalla Man C, Cobelli C. In silico model and computer simulation 
environment approximating the human glucose/insulin utilization. Food and Drug Administration 
Master File MAF 1521. 2008 
https://moodle.adaptland.it/pluginfile.php/20224/mod_data/content/42094/In-
Silico%20Application%20-%20paper%201.pdf  
In January 2008, a computer simulator of type 1 diabetes mellitus was accepted by the FDA Center 
for Devices and Radiological Health (CDRH) as a substitute for animal trials for the preclinical 
testing of control strategies in artificial pancreas studies84. Soon after, a first investigational device 
exemption was granted by the FDA for a closed-loop control clinical trial on the basis of results from 
this simulation tool.  To the authors’ knowledge, this is the first instance of a regulatory decision on 
medical devices where a computer model prediction is accepted as replacement of an in vivo 
experiment. 

 
Medical devices – risk of mechanical failure 

ASTM F2514-08, Standard Guide for Finite Element Analysis (FEA) of Metallic Vascular Stents 
Subjected to Uniform Radial Loading, ASTM International, West Conshohocken, PA, 2008, 
www.astm.org 
The American Society for Testing and Materials (ASTM) F2514-8 was the first technical standard 
related to the use of a physics-based model to predict the performance of medical devices. According 
to ASTM, the purpose of the guide is to “establish recommendations and considerations for the 
development, verification, validation, and reporting of structural finite element models used in the 
evaluation of the performance of a metallic vascular stent design undergoing uniform radial loading. 
This standard guide does not directly apply to non-metallic or absorbable stents, though many aspects 
of it may be applicable. The purpose of a structural analysis of a stent is to determine quantities such 
as the displacements, stresses, and strains within a device resulting from external loading, such as 
crimping or during the catheter loading process, and in-vivo processes, such as expansion and 
pulsatile loading”. 

Published in 2008, the standard establishes general requirements and considerations for using Finite 
Element Analysis techniques for the numerical simulation of metallic stents subjected to uniform 
radial loading. 
The basic idea was that for highly standardised experimental bench tests (for stents the ASTM F2477 
– 07: Standard Test Methods for in vitro Pulsatile Durability Testing of Vascular Stents), a finite 
element model could reliably predict the outcome of the experiment, and thus be used to reduce and 
refine, and even in some low-risk cases, replace the bench experiment itself. 
While the experimental tests being supplemented were extremely simple, the adoption of this early 
standard introduced in the regulatory space the concept that a model prediction could be used in place 
of an experiment within the regulatory process. 

 

 
84 https://doi.org/10.1177/193229680900300106  
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FDA-2020-D-0957 Non-Clinical Engineering Tests and Recommended Labeling for Intravascular 
Stents and Associated Delivery Systems – Guidance for Industry and FDA Staff 
https://www.fda.gov/media/71639/download  

This is not a guideline specifically focused on computational methods, but it includes some non-
binding recommendations for the use of modelling in the pre-clinical assessment of stents: 

- You should establish protocols for all experiments or computational analyses, including 
acceptance criteria when applicable, before you perform the tests 

- We recommend that you determine the stress- strain response, endurance limit, and post-
processing mechanical properties through physical experiments or computational models that 
simulate stent material properties, manufacturing, and deployment processes. 

- FDA recommends that you include the following elements in your stress/strain analysis and 
test report for each stent design. 

- Computational Model and Inputs 

- We recommend that you clearly identify and explain the sources and values of 
all inputs and assumptions used to create the stress/strain analysis model. You 
should identify any software used for analysis. We recommend that finite 
element analysis reports include the element types used to model the stent, 
loading surfaces, and boundary conditions. We also recommend that you 
indicate if mesh refinement analysis was performed and clearly describe how 
you model the surrounding vessel/tissue and the type of contact elements used. 
Specifically, we recommend that you consider the following: 

- Model Geometry 
- We recommend that you clearly describe the stent and vessel geometry used. 

If symmetry is used, we recommend that you explain why this is appropriate 
for your model. 

- If you do not model all of your stent sizes, we recommend that you explain 
why the modelled stent size is the worst case with respect to critical stresses. 
We recommend that you address the effect of dimensional variation within 
allowable tolerances on the results of the stress/strain analysis (i.e., maximum 
critical stress). 

- We recommend that you provide a justification for the physiological relevance 
of your vessel model parameters (e.g., vessel compliance). 

- Type of Element & Mesh Refinement Analysis 
- We recommend that you specify the number and type of elements used in your 

mesh, including any mesh refinement in transition regions or regions of 
complex geometry. 

- We recommend that you perform a mesh refinement analysis to ensure that the 
solution is independent of element size. If you do not believe mesh refinement 
analysis is necessary for your model, we recommend that you provide a 
justification for not conducting such an analysis. 
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- Contact Elements 

- We recommend that you specify the type of contact defined between any 2 
contacting bodies modelled in your analysis; e.g., the vessel and outer surface 
of your stent. 

- Material Properties (Constitutive Model) 

- We recommend that you clearly describe the material stress/strain behaviour 
of your stent in graphical and equation form. This discussion should include, 
but is not limited to the following considerations: 

- Linear vs. non-linear 

- Isotropic vs. anisotropic 
- Temperature-dependent behaviour of raw vs. processed material. 

- Finite Element Analysis (FEA) Validation 
- We recommend that you validate your FEA (material properties, geometry, 

and boundary conditions) with experimental bench testing. For example, you 
could perform radial loading of your device and compare the force-
displacement results with FEA of a simulated radial loading experiment. 

 

FDA-2019-D-1261. Technical Considerations for Non-Clinical Assessment of Medical Devices 
Containing Nitinol 

https://www.fda.gov/media/123272/download  
This guidance also includes some recommendations for the use of computational models: 

- 2. Computational Stress/Strain Analyses 
- If you plan to conduct computational analyses, we recommend the following to ensure 

the unique thermomechanical properties of nitinol are properly captured: 
- a. The constitutive laws applicable to nitinol can differ substantially from 

traditional metals. Therefore, you should simulate nitinol material with an 
appropriate material model. You should document and justify the parameters 
used in the material model. 

- b. Material model parameters can be obtained from ASTM F2516 “Standard 
Test Method for Tension Testing of Nickel-Titanium Superelastic Materials.” 
Test specimens should be representative of the final manufactured device (e.g., 
including heat treatment and surface processing steps). Testing should be 
conducted at a temperature representative of the clinical use environment (e.g., 
37°C for implantable devices). 

- c. Your computational analysis should include the effect of any shape setting 
steps in your manufacturing process since these will relieve pre-existing 
stresses. 

- d. If your device is subjected to cyclic loading during use, we recommend that 
you calculate fatigue safety factor(s) using a constant life curve. Unlike 
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traditional metals, which utilize stress-based fatigue life estimates (e.g., 
Goodman, Soderberg diagrams), using a constant life mean versus alternating 
strain diagram has been found to provide a good model for fatigue life 
prediction for nitinol.34 Fatigue life of nitinol is sensitive to composition and 
processing. Therefore, we recommend that you generate a constant life curve 
specific to your device by experimental testing of nitinol samples that are 
representative of your final manufactured device (e.g., including heat 
treatment and surface processing) rather than leveraging data not specific to 
your device. Since fatigue life can be adversely or favourably affected by pre-
strain (e.g., from crimping of a stent onto a delivery catheter), we recommend 
you consider and discuss the effects of pre-strain. We recommend that you 
state and justify the method used to calculate mean and alternating strain for 
fatigue safety factors (e.g., scalar or tensor). 

- e. You should validate the computational model used to analyse the nitinol 
device, and justify the validation activity relative to the context of use (CoU) 
of the computational model, the risk and role of the computational model in 
decision-making, and the range of conditions assessed relative to those in the 
CoU. We also recommend that you justify your choice of the parameter 
measured (e.g., force, strain) and loading path in your validation activities. 

- We recommend that the submission of computational stress/strain analysis reports 
follow the “Reporting of Computational Modeling Studies in Medical Device 
Submissions Guidance”. 

 

ASTM F2996-13, Standard Practice for Finite Element Analysis (FEA) of Non-Modular Metallic 
Orthopaedic Hip Femoral Stems, ASTM International, West Conshohocken, PA, 2013, www.astm.org 
The other widely used bench test for medical devices was the fatigue testing of hip stems.  The late 
1970s saw a number of fatigue fractures for various hip stems, which drove the ISO to the 
development of a technical standard for the execution of bench tests in the late 80s (ISO 7206-
3:1988).  Every regulatory agency quickly required these bench tests to provide the marketing 
authorisation for new hip stem designs.  The 2013 ASTM F2996 standard provides a computational 
complement to the ISO7206 fatigue tests. 
 

ASTM F3161-16, Standard Test Method for Finite Element Analysis (FEA) of Metallic Orthopaedic 
Total Knee Femoral Components under Closing Conditions, ASTM International, West 
Conshohocken, PA, 2016, www.astm.org 
ASTM F3334-19, Standard Practice for Finite Element Analysis (FEA) of Metallic Orthopaedic Total 
Knee Tibial Components, ASTM International, West Conshohocken, PA, 2019, www.astm.org 
Extension to two popular bench tests for orthopaedic implants: the fatigue testing of the femoral 
component and of the tibial component of knee replacements. 
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ASTM WK64097. New Practice for Spinal Fusion Cage Computational Modeling 

This ASTM work item (standard under development) should provide the computational counterpart 
to the “ASTM F2077-18: Test Methods For Intervertebral Body Fusion Devices” experimental 
protocol. 
 

Medical devices - Guidance on reporting modelling studies 
FDA-2013-D-1530. Reporting of Computational Modeling Studies in Medical Device Submissions. 
Guidance for Industry and Food and Drug Administration Staff. 
In 2013 the FDA CDRH started to work on a guidance document on how to report the results of 
computational modelling studies in medical device regulatory submissions. The first draft was 
published in 2014, with the final version issued in 2016. Already in 2017, 220 of the 1500 new 
medical devices submitted to the FDA included computer models and simulations as evidence in their 
regulatory submissions (Source: AABME). 

According to this guidance such report should include: 
- Executive Report Summary 
- Background/Introduction 
- Code Verification 
- System Configuration 
- System Properties 
- System Conditions 
- System Discretization 
- Numerical Implementation 
- Validation 
- Results 
- Limitations 

The document also provides in annex more detailed instructions for specific type of models: 
- Computational Fluid Dynamics and Mass Transport 
- Computational Solid Mechanics 
- Computational Electromagnetics and Optics 
- Computational Ultrasound 
- Computational Heat Transfer 

 

FDA-2021-D-0980. Assessing the Credibility of Computational Modeling and Simulation in Medical 
Device Submissions. 

https://www.fda.gov/media/154985/download  
This is to date (July 2022) the most complete guidance available on this topic; the linked version is 
the final draft of the revision published in December 2021, which will replace the 2016 version.  The 
guidance provides a generalized framework for assessing credibility of computational modelling in a 
regulatory submission.  Since the document is entirely relevant trying to make a summary here would 
be difficult. Instead, we provide an extract of the index, for the core chapters: 

A. Preliminary steps 
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Question of Interest 

Context of use (CoU) 
Model risk 

B. Credibility Evidence 
Code verification results 

Model calibration evidence 
General non-CoU evidence 

Evidence generated using bench-top conditions to support the current CoU 
Evidence generated using in vivo conditions to support the current CoU 

Evidence generated using bench-top conditions to support a different CoU 
Evidence generated using in vivo conditions to support a different CoU 

Population-based evidence 
Emergent model behavior 

Model plausibility 
C. Credibility Factors and Credibility Goals 

D. Adequacy Assessment 
 

Medical devices - Credibility assessment  
ASME VV40:2018. Assessing Credibility of Computational Modeling through Verification and 
Validation: Application to Medical Devices 
In 2018 was published the official version of the first technical standard that specifies a systematic 
approach to the credibility assessment for computational models, which results inform a regulatory 
submission on medical devices.  ASME reports that the standard “determine and justify the 
appropriate level of credibility for using a computational model to inform a decision”; thus, its scope 
is not limited to the regulatory purpose. Since this standard is one of the centrepieces of this position 
paper, we provide here only a summary. 

The standard introduces a general principle: the credibility of a computational model should be 
commensurate with the risk associated in using the model to influence a decision. The concept of 
risk-based acceptability is very general and has been rapidly endorsed also for other medical products, 
as evidenced by a 2019 paper providing a concrete example for a medical device85, a 2020 paper 
proposing its use also in drug development for PBPK models86, and a concept reiterated in a 2021 
paper where the proposed use is extended to any mechanistic model used in drug development87. 

 

 
85 https://doi.org/10.1097/mat.0000000000000996  
86 https://doi.org/10.1002/psp4.12479  
87 https://doi.org/10.1002/psp4.12669  
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FDA-2003. Knee Joint Patellofemorotibial and Femorotibial Metal/Polymer Porous-Coated 
Uncemented Prostheses - Class II Special Controls Guidance Document for Industry and FDA 
https://www.fda.gov/medical-devices/guidance-documents-medical-devices-and-radiation-emitting-
products/knee-joint-patellofemorotibial-and-femorotibial-metalpolymer-porous-coated-
uncemented-prostheses 

the guidance mentions the use of finite element analysis to support regulatory submissions: 
"...Alternatively, finite element analysis (FEA) or other calculations with validation of the model and 
assumed values may be appropriate”. 
 

Medical devices: EU side 
EU-MDR-2017/745: Medical Device Regulation.  

This new legislation defines the rules concerning the placing on the market, making available on the 
market, or putting into service of medical devices for human use and accessories for such devices in 
the EU. While the legislation does not include specific requirements for the use of computer models 
and simulation for the development of medical devices, it explicitly acknowledges their use: 

- “where appropriate, the results of biophysical or modelling research the validity of which has 
been demonstrated beforehand” (Annex I, 10.1a)) 

- “the pre-clinical testing, for example laboratory testing, simulated use testing, computer 
modelling, the use of animal models” (Annex VII, 4.5.4.a)). 

 
Japanese guidelines 

Ministry of Economics, Industries, and Japan Agency for Medical Research and Development. 
Guidelines for Developing in silico evaluation. March 2019. 

We were able to access an English translation of this document, dated 2019, that targets specifically 
In Silico Clinical Trials for medical devices.  The guideline suggests for the model evaluation: 

1. Construct a scenario based on a mathematical model (i.e., an expectation based on an 
experiment that such a phenomenon will be observed if the model is correct). 

2. Run all or part of the scenario as an experiment. 

3. Consider whether the experimental results support the scenario. 
4. Consider whether the numerical model is reasonable in light of established theories and 

techniques. 
(a) Consider whether the numerical model (experimental system) including numerical 

methods adequately treats the system subject to the mathematical model. 
5. We will discuss the hypotheses that mathematical models entail and the conditions under 

which they are valid. 
(a) Consider whether their logic is interconnected and whether there are any holes. 

(b) When multiple hypotheses are included, it may not be possible to isolate them 
depending on the conditions of the experiment. 
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The document also contemplates a case they call V&V of Unknown Provenance (VOUP), in which 
methods and others are known and commonly available, but adequate recordings of “who did the 
experiment” and “how” are unavailable.  This resembles the concept Software of Unknown 
Provenance in International Electrotechnical Commission (IEC) 62304. They make a parallel with 
experimental methods, where some “good practice” must be adopted for the experiment to be valid, 
but it is not always possible to trace back when such good practice was adopted and validated. 
Similarly, in silico models might use practices that are known to be valid, but that cannot be 
documented back to the original developer.  When this is the case, the guideline recommends that 
“the degree of VOUP should be clarified, and the in silico evaluation should proceed based on the 
items that can be accepted although the details are unknown.” 
The guideline discusses some essential steps: 

1. Determination of the subject.  This is what we call Context of Use. 
2. Setting targets for achieving the task.  Objectives set based on available knowledge and 

standards. 
3. List of components to be calculated. 

4. Description of the physical phenomena of numerical calculations and mathematical 
models representing them 

5. Various parameter settings in the mathematical model.  These include: 
a. The shape and dimension of the object to be numerically calculated. 

b. Boundary conditions for numerical calculations  
c. Initial conditions for numerical calculation  

d. External input to the object required to perform numerical calculations (e.g., energy, 
load, force, etc.). 

e. Characteristic values that appear in mathematical models and are essential for 
numerical computation. 

f. Unit system of numerical calculation used for shape, dimension, characteristic value, 
external input, etc., and check the consistency of units. 

6. Description of the numerical method 

7. Description of numerical results 
8. Confirmation of conformity with numerical calculations 

9. Validation of numerical calculations 
10. Validation of in silico assessment 

 
10.7.1. Chinese guidelines 

We were able to access an English translation of this document, dated 20, that targets model informed 
drug development.  The guideline suggests the following points to be addressed during the 
“Implementation of model analysis”  

1. Quality control 
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2. Model assumption 
3. Model verification 
4. Model-based analysis plan 
1. Model-based analysis report 

of which 1-3 could be understood of dealing with the evaluation of models.  

 
 

 
 

 
 

 
 

 


